import argparse import json import os import sys from pathlib import Path from threading import Thread import numpy as np import torch from tqdm import tqdm FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.callbacks import Callbacks from utils.datasets import create_dataloader from utils.general import (LOGGER, NCOLS, box_iou, check_dataset, check_img_size, check_requirements, check_yaml, coco80_to_coco91_class, colorstr, increment_path, non_max_suppression, print_args, scale_coords, xywh2xyxy, xyxy2xywh) from utils.metrics import ConfusionMatrix, ap_per_class from utils.plots import output_to_target, plot_images, plot_val_study from utils.torch_utils import select_device, time_sync
时间: 2024-03-30 20:33:14 浏览: 139
linux 下 pip3 报错“ File “/usr/bin/pip3”, line 9, in from pip import mainImportError: canno”处理
5星 · 资源好评率100%
这段代码主要是导入了一些Python库和自定义的模块,以及定义了一些全局变量,主要功能包括:
- argparse: 用于解析命令行参数。
- json: 用于解析JSON格式的数据。
- os: 提供了一些与操作系统交互的函数。
- sys: 提供了一些与Python解释器交互的函数。
- pathlib: 提供了一种面向对象的方式来操作文件路径。
- threading: 用于创建多线程程序。
- numpy: 用于支持大型、多维数组和矩阵运算。
- torch: 用于实现深度学习模型。
- tqdm: 用于显示进度条。
除此之外,还导入了自定义的模块,包括:
- DetectMultiBackend: 实现了多种目标检测算法的后端。
- Callbacks: 实现了一些回调函数,用于在训练过程中进行一些操作。
- create_dataloader: 用于创建数据加载器。
- check_dataset: 用于检查数据集。
- check_img_size: 用于检查图像大小。
- check_requirements: 用于检查是否满足运行要求。
- check_yaml: 用于检查YAML文件。
- coco80_to_coco91_class: 用于将COCO80类别映射到COCO91类别。
- colorstr: 用于生成颜色字符串。
- increment_path: 用于生成不重复的路径。
- non_max_suppression: 用于实现非极大值抑制。
- print_args: 用于打印命令行参数。
- scale_coords: 用于将坐标缩放。
- xywh2xyxy: 用于将中心坐标和宽高转换为左上角和右下角坐标。
- xyxy2xywh: 用于将左上角和右下角坐标转换为中心坐标和宽高。
其中,FILE定义了当前文件的路径,ROOT定义了YOLOv5的根目录,如果ROOT不在sys.path中,则将其添加到PATH中,并将其转换为相对路径。
阅读全文