多头注意力机制代码 tf
时间: 2023-09-21 21:03:27 浏览: 91
以下是使用 TensorFlow 实现的多头注意力机制代码示例:
```python
import tensorflow as tf
class MultiHeadAttention(tf.keras.layers.Layer):
def __init__(self, embedding_dim, num_heads):
super(MultiHeadAttention, self).__init__()
self.embedding_dim = embedding_dim
self.num_heads = num_heads
self.depth = embedding_dim // num_heads
self.wq = tf.keras.layers.Dense(embedding_dim)
self.wk = tf.keras.layers.Dense(embedding_dim)
self.wv = tf.keras.layers.Dense(embedding_dim)
self.dense = tf.keras.layers.Dense(embedding_dim)
def split_heads(self, x, batch_size):
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
return tf.transpose(x, perm=[0, 2, 1, 3])
def call(self, q, k, v, mask):
batch_size = tf.shape(q)[0]
q = self.wq(q)
k = self.wk(k)
v = self.wv(v)
q = self.split_heads(q, batch_size)
k = self.split_heads(k, batch_size)
v = self.split_heads(v, batch_size)
scaled_attention, attention_weights = self.scaled_dot_product_attention(q, k, v, mask)
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])
concat_attention = tf.reshape(scaled_attention, (batch_size, -1, self.embedding_dim))
output = self.dense(concat_attention)
return output, attention_weights
def scaled_dot_product_attention(self, q, k, v, mask):
matmul_qk = tf.matmul(q, k, transpose_b=True)
dk = tf.cast(tf.shape(k)[-1], tf.float32)
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
if mask is not None:
scaled_attention_logits += (mask * -1e9)
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1)
output = tf.matmul(attention_weights, v)
return output, attention_weights
```
该代码实现了一个多头注意力机制层,其中 `embedding_dim` 为输入向量的维度,`num_heads` 为注意力头的个数。在 `call` 方法中,首先对输入进行线性变换,然后分割成多个头,并对每个头进行注意力计算。最后将多个头的输出进行拼接并进行一次线性变换,得到最终输出。`scaled_dot_product_attention` 方法实现了注意力计算的过程,包括点积计算、缩放、softmax,以及应用掩码(如果有)。
阅读全文