评价图像模糊度的经典无参考指标的matlab代码
时间: 2024-01-30 08:02:08 浏览: 138
matlab 图像质量评价经典算法代码
图像模糊度的经典无参考指标包括模糊程度估计(Blind/No-reference Image Blur Assessment,BRISQUE)、清晰度评分(Image Clarity Assessment,ICA)等。以下是 BRISQUE 的 MATLAB 代码实现:
```
function brisque_score = brisque(image)
% Load the model parameters
load('brisqueparameters.mat');
% Convert the input image to grayscale
if size(image, 3) == 3
image = rgb2gray(image);
end
% Compute the feature vector
features = compute_features(image, mu_prisparam, cov_prisparam, mu_ggdparam, cov_ggdparam);
% Compute the quality score
brisque_score = features * svm_weights' + svm_bias;
end
function features = compute_features(image, mu_prisparam, cov_prisparam, mu_ggdparam, cov_ggdparam)
% Compute the image statistics
mu = mean2(image);
sigma = std2(image);
skewness = skewness_func(image(:));
kurtosis = kurtosis_func(image(:));
ggd_params = ggd_fit(image(:));
eta = ggd_params(1);
beta = ggd_params(2);
% Compute the feature vector
features = [mu, sigma, skewness, kurtosis, eta, beta];
for i = 1:length(mu_prisparam)
features = [features, log(1 + (mu_prisparam(i) - mu)^2 / (cov_prisparam(i) + eps))];
end
for i = 1:length(mu_ggdparam)
features = [features, log(1 + (mu_ggdparam(i) - eta)^2 / (cov_ggdparam(i) + eps))];
end
end
function skew = skewness_func(x)
x = double(x);
n = length(x);
mu = sum(x) / n;
sigma = sqrt(sum((x - mu).^2) / n);
skew = (sum((x - mu).^3) / n) / sigma^3;
end
function kurt = kurtosis_func(x)
x = double(x);
n = length(x);
mu = sum(x) / n;
sigma = sqrt(sum((x - mu).^2) / n);
kurt = (sum((x - mu).^4) / n) / sigma^4 - 3;
end
function params = ggd_fit(x)
x = double(x);
n = length(x);
x2 = x.^2;
sigma2 = mean(x2);
sigma = sqrt(sigma2);
gamma_range = 0.2:0.001:10;
rhat_num = mean(abs(x).^(1/3));
rhat_den = sqrt(sigma2) * mean(abs(x).^(-1/3));
rhat = rhat_num / rhat_den;
[~, index] = min(abs(gamma_range - rhat));
gamma_hat = gamma_range(index);
beta_hat = sigma2 / gamma_hat;
alpha_hat = sqrt(pi) * gamma_hat / (2 * gamma_func(3 / (2 * gamma_hat)));
params = [alpha_hat, beta_hat];
end
function y = gamma_func(x)
y = gamma(x);
end
```
以上代码实现了 BRISQUE 指标的计算,其中包括了特征提取、SVM 模型的权重和偏差、以及 GGD 分布的参数估计等。BRISQUE 的评价范围为 0-100,数值越高则表示图像越清晰。
阅读全文