模拟退火求解tsp31个城市问题python
时间: 2023-07-28 13:33:42 浏览: 96
基于python模拟退火算法实现tsp最短路径问题
好的,下面是 Python 代码实现:
```python
import math
import random
# 城市坐标
coords = [(64, 96), (80, 39), (69, 23), (72, 42), (48, 67), (58, 43), (81, 33), (80, 23), (96, 14), (60, 21), (14, 70), (11, 31), (4, 50), (6, 34), (17, 72), (7, 28), (88, 75), (58, 36), (92, 7), (83, 78), (83, 5), (31, 39), (53, 82), (63, 8), (95, 75), (73, 17), (49, 41), (62, 11), (52, 63), (26, 29), (26, 27)]
n = len(coords) # 城市数量
# 计算两个城市之间的距离
def distance(city1, city2):
x1, y1 = city1
x2, y2 = city2
return math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
# 计算一条路径的总距离
def total_distance(path):
distance_sum = 0
for i in range(n - 1):
distance_sum += distance(coords[path[i]], coords[path[i+1]])
distance_sum += distance(coords[path[-1]], coords[path[0]])
return distance_sum
# 初始化路径
path = [i for i in range(n)]
random.shuffle(path) # 随机打乱顺序
# 模拟退火算法
T = 1.0 # 初始温度
T_min = 0.00001 # 最小温度
cooling_rate = 0.9999 # 降温速率
while T > T_min:
for i in range(100):
# 随机交换两个城市的位置
random_i = random.randint(0, n - 1)
random_j = random.randint(0, n - 1)
path[random_i], path[random_j] = path[random_j], path[random_i]
# 计算新路径的总距离
new_distance = total_distance(path)
# 计算距离差
delta = new_distance - total_distance(path)
# 判断是否接受新路径
if delta < 0 or math.exp(-delta / T) > random.random():
continue
else:
path[random_i], path[random_j] = path[random_j], path[random_i] # 恢复原来的路径
T *= cooling_rate # 降温
print(path)
print(total_distance(path))
```
在上面的代码中,我们首先定义了城市坐标和城市数量。然后,我们定义了两个函数:`distance` 计算两个城市之间的距离,`total_distance` 计算一条路径的总距离。
接着,我们初始化了一条路径,采用随机打乱顺序的方式。然后,我们进入了模拟退火算法的主循环。在每个温度下,我们随机交换两个城市的位置,计算新路径的总距离,判断是否接受新路径。如果接受,则继续;否则,恢复原来的路径。最终,我们得到了最优的路径和总距离。
阅读全文