train_df = pd.read_csv('../input/train.csv') test_df = pd.read_csv('../input/test.csv') combine = [train_df, test_df] 转述成Rstudio
时间: 2023-08-21 16:31:08 浏览: 176
这是Python中的代码,如果要在RStudio中实现相同的功能,您需要使用R中的读取csv文件的函数,例如read.csv()。同时,您需要使用R中的数据框(data frame)来存储数据。
下面是一个示例代码,供您参考:
```
train_df <- read.csv("../input/train.csv")
test_df <- read.csv("../input/test.csv")
combine <- list(train_df, test_df)
```
在这个示例中,我们使用了read.csv()函数分别读取了train.csv和test.csv两个文件,然后将它们存储在R中的数据框train_df和test_df中。最后,我们使用list函数将这两个数据框组合成一个列表combine。
相关问题
import pandas as pd df = pd.read_csv(filename, header=None, names=['category', 'text']) from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score # 读取新闻文本数据 from csv import readerimport numpy as np filename = input("请输入文件名:") with open(filename,'rt',encoding = 'UTF-8') as file: readers = reader(raw_data,delimiter=',') A = list(file) data = np.array(A)print(data) df = pd.read_csv('20news-18828') # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42) # 对文本进行特征提取 tfidf = TfidfVectorizer(stop_words='english') X_train = X_train.astype(str) X_test = X_test.astype(str) # 使用多项式朴素贝叶斯模型进行训练和预测 clf = MultinomialNB() clf.fit(X_train_tfidf, y_train) y_pred = clf.predict(X_test_tfidf.toarray()) # 输出模型的准确率 print('Accuracy:', accuracy_score(y_test, y_pred))是否有问题
有几个问题需要修改:
1. 第一行代码中的`filename`是未定义的,需要将其定义或者替换成具体的文件名。
2. 第二行代码中的`header=None`是不必要的,因为后面显式地指定了列名。
3. 第三行代码中的`raw_data`是未定义的,需要将其替换成文件对象`file`。
4. 第四行代码中的`list(file)`可以直接替换成`file.readlines()`。
5. 第五行代码中的文件名应该是具体的文件名,而不是数据集的名称。
6. 第七行代码中的`train_test_split`函数未导入,需要将其导入。
7. 第十二行代码中的`X_train_tfidf`和`X_test_tfidf`未定义,需要先进行特征提取。
综上所述,可以修改为如下代码:
```python
import pandas as pd
import numpy as np
from csv import reader
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
filename = input("请输入文件名:")
with open(filename, 'rt', encoding='UTF-8') as file:
A = file.readlines()
data = np.array(A)
df = pd.DataFrame(data, columns=['text'])
# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(df['text'], df['category'], random_state=42)
# 对文本进行特征提取
tfidf = TfidfVectorizer(stop_words='english')
X_train_tfidf = tfidf.fit_transform(X_train.astype(str))
X_test_tfidf = tfidf.transform(X_test.astype(str))
# 使用多项式朴素贝叶斯模型进行训练和预测
clf = MultinomialNB()
clf.fit(X_train_tfidf, y_train)
y_pred = clf.predict(X_test_tfidf.toarray())
# 输出模型的准确率
print('Accuracy:', accuracy_score(y_test, y_pred))
```
import numpy as np import matplotlib.pyplot as plt import pickle as pkl import pandas as pd import tensorflow.keras from tensorflow.keras.models import Sequential, Model, load_model from tensorflow.keras.layers import LSTM, GRU, Dense, RepeatVector, TimeDistributed, Input, BatchNormalization, \ multiply, concatenate, Flatten, Activation, dot from sklearn.metrics import mean_squared_error,mean_absolute_error from tensorflow.keras.optimizers import Adam from tensorflow.python.keras.utils.vis_utils import plot_model from tensorflow.keras.callbacks import EarlyStopping from keras.callbacks import ReduceLROnPlateau df = pd.read_csv('lorenz.csv') signal = df['signal'].values.reshape(-1, 1) x_train_max = 128 signal_normalize = np.divide(signal, x_train_max) def truncate(x, train_len=100): in_, out_, lbl = [], [], [] for i in range(len(x) - train_len): in_.append(x[i:(i + train_len)].tolist()) out_.append(x[i + train_len]) lbl.append(i) return np.array(in_), np.array(out_), np.array(lbl) X_in, X_out, lbl = truncate(signal_normalize, train_len=50) X_input_train = X_in[np.where(lbl <= 9500)] X_output_train = X_out[np.where(lbl <= 9500)] X_input_test = X_in[np.where(lbl > 9500)] X_output_test = X_out[np.where(lbl > 9500)] # Load model model = load_model("model_forecasting_seq2seq_lstm_lorenz.h5") opt = Adam(lr=1e-5, clipnorm=1) model.compile(loss='mean_squared_error', optimizer=opt, metrics=['mae']) #plot_model(model, to_file='model_plot.png', show_shapes=True, show_layer_names=True) # Train model early_stop = EarlyStopping(monitor='val_loss', patience=20, verbose=1, mode='min', restore_best_weights=True) #reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=9, verbose=1, mode='min', min_lr=1e-5) #history = model.fit(X_train, y_train, epochs=500, batch_size=128, validation_data=(X_test, y_test),callbacks=[early_stop]) #model.save("lstm_model_lorenz.h5") # 对测试集进行预测 train_pred = model.predict(X_input_train[:, :, :]) * x_train_max test_pred = model.predict(X_input_test[:, :, :]) * x_train_max train_true = X_output_train[:, :] * x_train_max test_true = X_output_test[:, :] * x_train_max # 计算预测指标 ith_timestep = 10 # Specify the number of recursive prediction steps # List to store the predicted steps pred_len =2 predicted_steps = [] for i in range(X_output_test.shape[0]-pred_len+1): YPred =[],temdata = X_input_test[i,:] for j in range(pred_len): Ypred.append (model.predict(temdata)) temdata = [X_input_test[i,j+1:-1],YPred] # Convert the predicted steps into numpy array predicted_steps = np.array(predicted_steps) # Plot the predicted steps #plt.plot(X_output_test[0:ith_timestep], label='True') plt.plot(predicted_steps, label='Predicted') plt.legend() plt.show()
这段代码看起来是一个用于时间序列预测的深度学习模型。该模型使用了序列到序列 LSTM (Seq2Seq LSTM) 模型进行预测,使用了 EarlyStopping 回调函数来避免过度拟合,并使用 Adam 优化器来进行模型优化。
具体来说,该代码读取了一个名为 'lorenz.csv' 的数据文件,将其中的信号列读取出来并进行了归一化处理。然后,使用 truncate 函数将信号序列切割成训练集和测试集,将其输入到 Seq2Seq LSTM 模型中进行训练。训练完成后,对测试集进行预测并计算预测指标,最后使用 matplotlib 库将预测结果可视化。
如果需要更详细的解释或修改建议,请提出具体问题或要求。
阅读全文
相关推荐
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)