广度优先遍历求无向图的最短路径c语言
时间: 2023-08-03 10:07:20 浏览: 79
C语言寻找无向图两点间的最短路径
广度优先搜索可以求解无向图的最短路径,具体步骤如下:
1. 定义一个队列,将起始节点加入队列中。
2. 定义一个数组,记录每个节点是否被访问过,起始节点标记为已访问。
3. 定义一个数组,记录每个节点到起始节点的距离,起始节点的距离为0。
4. 对队列中的节点进行遍历,将与该节点相邻且未访问过的节点加入队列中,并更新它们到起始节点的距离。
5. 将已经遍历过的节点标记为已访问。
6. 重复步骤4和5,直到队列为空。
下面是一个求解无向图最短路径的C语言代码示例:
```c
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#define MAX_VERTICES 100
typedef struct Graph {
int num_vertices;
int adj_matrix[MAX_VERTICES][MAX_VERTICES];
} Graph;
typedef struct QueueNode {
int data;
struct QueueNode* next;
} QueueNode;
typedef struct Queue {
QueueNode* front;
QueueNode* rear;
} Queue;
Graph* createGraph(int num_vertices);
void addEdge(Graph* graph, int src, int dest);
Queue* createQueue();
void enqueue(Queue* queue, int data);
int dequeue(Queue* queue);
bool isQueueEmpty(Queue* queue);
bool isVisited[MAX_VERTICES];
int distances[MAX_VERTICES];
int main() {
Graph* graph = createGraph(6);
addEdge(graph, 0, 1);
addEdge(graph, 0, 2);
addEdge(graph, 1, 2);
addEdge(graph, 1, 3);
addEdge(graph, 2, 3);
addEdge(graph, 3, 4);
addEdge(graph, 4, 5);
Queue* queue = createQueue();
enqueue(queue, 0);
isVisited[0] = true;
distances[0] = 0;
while (!isQueueEmpty(queue)) {
int current_node = dequeue(queue);
for (int i = 0; i < graph->num_vertices; i++) {
if (graph->adj_matrix[current_node][i] && !isVisited[i]) {
enqueue(queue, i);
isVisited[i] = true;
distances[i] = distances[current_node] + 1;
}
}
}
for (int i = 0; i < graph->num_vertices; i++) {
printf("Distance from node 0 to node %d is %d\n", i, distances[i]);
}
return 0;
}
Graph* createGraph(int num_vertices) {
Graph* graph = (Graph*)malloc(sizeof(Graph));
graph->num_vertices = num_vertices;
for (int i = 0; i < num_vertices; i++) {
for (int j = 0; j < num_vertices; j++) {
graph->adj_matrix[i][j] = 0;
}
}
return graph;
}
void addEdge(Graph* graph, int src, int dest) {
graph->adj_matrix[src][dest] = 1;
graph->adj_matrix[dest][src] = 1;
}
Queue* createQueue() {
Queue* queue = (Queue*)malloc(sizeof(Queue));
queue->front = NULL;
queue->rear = NULL;
return queue;
}
void enqueue(Queue* queue, int data) {
QueueNode* new_node = (QueueNode*)malloc(sizeof(QueueNode));
new_node->data = data;
new_node->next = NULL;
if (queue->rear == NULL) {
queue->front = new_node;
queue->rear = new_node;
} else {
queue->rear->next = new_node;
queue->rear = new_node;
}
}
int dequeue(Queue* queue) {
if (queue->front == NULL) {
return -1;
}
int data = queue->front->data;
QueueNode* temp = queue->front;
queue->front = queue->front->next;
free(temp);
if (queue->front == NULL) {
queue->rear = NULL;
}
return data;
}
bool isQueueEmpty(Queue* queue) {
return queue->front == NULL;
}
```
这个代码的输出结果应该是:
```
Distance from node 0 to node 0 is 0
Distance from node 0 to node 1 is 1
Distance from node 0 to node 2 is 1
Distance from node 0 to node 3 is 2
Distance from node 0 to node 4 is 3
Distance from node 0 to node 5 is 4
```
阅读全文