def gru_cell(self, x, state): # Compute gates x_and_state = torch.cat([x, state], dim=1) update_gate = self.conv_update(x_and_state) reset_gate = self.conv_reset(x_and_state) # Add bias to initialise gate as close to identity function update_gate = torch.sigmoid(update_gate + self.gru_bias_init) reset_gate = torch.sigmoid(reset_gate + self.gru_bias_init) # Compute proposal state, activation is defined in norm_act_config (can be tanh, ReLU etc) state_tilde = self.conv_state_tilde(torch.cat([x, (1.0 - reset_gate) * state], dim=1)) output = (1.0 - update_gate) * state + update_gate * state_tilde return output函数是怎么一步步计算的?
时间: 2024-04-04 18:30:23 浏览: 80
这个函数实现了GRU(Gated Recurrent Unit)的一个时间步的计算过程,以下是它的具体实现过程:
1. 将输入数据x和上一时刻的状态state按照列方向(dim=1)进行拼接,得到x_and_state。
2. 将x_and_state输入到两个卷积层中,分别计算更新门(update_gate)和重置门(reset_gate)。
3. 给计算得到的更新门和重置门加上一个初始化偏置(gru_bias_init)并通过sigmoid激活函数进行归一化,得到update_gate和reset_gate。
4. 根据重置门计算重置后的上一时刻状态,即(1.0 - reset_gate) * state。
5. 将x和上一时刻状态(经过重置门的作用后的状态)按照列方向进行拼接,得到x_and_state_reset。
6. 将x_and_state_reset输入到另一个卷积层中,计算出候选状态state_tilde。
7. 根据更新门和候选状态计算当前时刻的状态output,即(1.0 - update_gate) * state + update_gate * state_tilde。
8. 返回计算得到的当前时刻状态output。
相关问题
class FuturePrediction(torch.nn.Module): def __init__(self, in_channels, latent_dim, n_gru_blocks=3, n_res_layers=3): super().__init__() self.n_gru_blocks = n_gru_blocks # Convolutional recurrent model with z_t as an initial hidden state and inputs the sample # from the probabilistic model. The architecture of the model is: # [Spatial GRU - [Bottleneck] x n_res_layers] x n_gru_blocks self.spatial_grus = [] self.res_blocks = [] for i in range(self.n_gru_blocks): gru_in_channels = latent_dim if i == 0 else in_channels self.spatial_grus.append(SpatialGRU(gru_in_channels, in_channels)) self.res_blocks.append(torch.nn.Sequential(*[Bottleneck(in_channels) for _ in range(n_res_layers)])) self.spatial_grus = torch.nn.ModuleList(self.spatial_grus) self.res_blocks = torch.nn.ModuleList(self.res_blocks) def forward(self, x, hidden_state): # x has shape (b, n_future, c, h, w), hidden_state (b, c, h, w) for i in range(self.n_gru_blocks): x = self.spatial_grus[i](x, hidden_state, flow=None) b, n_future, c, h, w = x.shape x = self.res_blocks[i](x.view(b * n_future, c, h, w)) x = x.view(b, n_future, c, h, w) return x是什么意思?
这是一个基于卷积循环神经网络的模型,用于进行未来预测。该模型包括若干个 SpatialGRU 模块和若干个 Bottleneck 模块,可以接受输入 x 和初始隐藏状态 hidden_state,输出预测结果 x。其中,x 的形状为 (b, n_future, c, h, w),表示批次大小为 b,未来预测数为 n_future,通道数为 c,高度为 h,宽度为 w;hidden_state 的形状为 (b, c, h, w),表示批次大小为 b,通道数为 c,高度为 h,宽度为 w。在 forward 方法中,会循环执行若干次 SpatialGRU 和 Bottleneck 模块,最终输出预测结果 x。
class my_BiGRU(torch.nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, gru_dropout): super(my_BiGRU, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.gru_dropout = gru_dropout self.gru = torch.nn.GRU(input_size, hidden_size, num_layers=num_layers, batch_first=True, bidirectional=True) self.fc = torch.nn.Linear(hidden_size * 2, output_size) def forward(self, x): h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(x.device) out, _ = self.gru(x, h0) out = self.fc(out[:, -1, :]) return out
这是一个使用双向GRU和全连接层的神经网络模型。该模型的输入大小为input_size,输出大小为output_size。它有num_layers层双向GRU,每层的隐藏状态大小为hidden_size。在GRU层之后,它使用全连接层将GRU的输出转换为所需的输出大小。该模型还使用了dropout来减少过拟合。在forward函数中,它首先将输入x传递给双向GRU,然后将最后一个时间步的输出传递给全连接层以获取最终输出。
阅读全文