2560个时间步经下边这段代码处理为什么生成1281个频率分量def fft(data,N,fs): if N % 2 > 0: # 判断N是奇数还是偶数,N = 2560 N -= 1 if N > len(data): xs = np.append(data, np.zeros(N - len(data))) # 补零 else: xs = data[:N] # 从波形数据中取样N个点进行运算 xf = np.fft.rfft(xs) / N # 返回N/2+1个频率。rfft函数的返回值是N/2+1个复数,分别表示从0(Hz)到sampling_rate/2(Hz)的分。 freq = np.linspace(0, fs / 2, int(N / 2 + 1)) # 返回值每个下标对应的真正频率 (0,12800,1281) xf = np.abs(xf) * 2 # 信号的幅值,即振幅 # plt.plot(freq, xf) # plt.xlabel(u"频率(Hz)", fontproperties='FangSong') # 字体FangSong # # plt.ylabel(u'幅值', fontproperties='FangSong') # plt.show() return xf, freq

时间: 2024-02-14 17:21:49 浏览: 18
这段代码接受三个参数:数据集data,采样点数N和采样频率fs。它的作用是对给定的数据进行傅里叶变换,将时域信号转换为频域信号。其中,函数中的if语句用于判断采样点数是否为偶数,如果是奇数则将采样点数减一。接下来,if-else语句将数据集data补零或者从中取出N个点进行运算。使用np.fft.rfft函数进行傅里叶变换,并将结果除以N得到N/2+1个频率分量,返回的xf是一个复数数组。np.linspace函数生成了一个长度为int(N/2+1)的数组freq,表示每个下标对应的真正频率。最后,将傅里叶变换结果xf中的实数部分取绝对值后乘以2得到信号的幅值,并返回幅值数组xf和频率数组freq。因为N=2560,所以返回的频率分量个数为1281。
相关问题

设计一个25阶的FIR低通滤波器,截止频率为20MHz,并给出python实现代码,并进行绘制

### 回答1: 我可以提供一个python实现的25阶低通滤波器的代码,截止频率为20MHz,代码如下:from scipy.signal import butter, lfilter, freqzimport matplotlib.pyplot as pltimport numpy as np def butter_lowpass(cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = butter(order, normal_cutoff, btype='low', analog=False) return b, adef butter_lowpass_filter(data, cutoff, fs, order=5): b, a = butter_lowpass(cutoff, fs, order=order) y = lfilter(b, a, data) return y# Filter requirements. order = 25 fs = 20.0 # sample rate, Hz cutoff = 10.0 # desired cutoff frequency of the filter, Hz# Get the filter coefficients so we can check its frequency response. b, a = butter_lowpass(cutoff, fs, order)# Plot the frequency response. w, h = freqz(b, a, worN=8000) plt.subplot(2, 1, 1) plt.plot(0.5*fs*w/np.pi, np.abs(h), 'b') plt.plot(cutoff, 0.5*np.sqrt(2), 'ko') plt.axvline(cutoff, color='k') plt.xlim(0, 0.5*fs) plt.title("Lowpass Filter Frequency Response") plt.xlabel('Frequency [Hz]') plt.grid()# Demonstrate the use of the filter. # First make some data to be filtered. T = 5.0 # seconds n = int(T * fs) # total number of samples t = np.linspace(0, T, n, endpoint=False) # "Noisy" data. We want to recover the 1.2 Hz signal from this. data = np.sin(1.2*2*np.pi*t) + 1.5*np.cos(9*2*np.pi*t) + 0.5*np.sin(12.0*2*np.pi*t)# Filter the data, and plot both the original and filtered signals. y = butter_lowpass_filter(data, cutoff, fs, order)plt.subplot(2, 1, 2) plt.plot(t, data, 'b-', label='data') plt.plot(t, y, 'g-', linewidth=2, label='filtered data') plt.xlabel('Time [sec]') plt.grid() plt.legend()plt.subplots_adjust(hspace=0.35) plt.show() ### 回答2: FIR(有限脉冲响应)滤波器是一种常用的数字滤波器,通过一系列加权和求和的操作对输入信号进行滤波。设计一个25阶的FIR低通滤波器,截止频率为20MHz,可以通过以下步骤实现,同时给出Python代码和绘图示例: 1. 确定滤波器阶数为25和截止频率为20MHz。 2. 计算滤波器的理想频率响应。低通滤波器的理想频率响应是在截止频率前的频率范围内为1,截止频率后的频率范围内为0。 3. 将理想频率响应进行离散化,得到用于滤波器设计的数字滤波器的频率响应。 4. 将离散化的频率响应应用于滤波器设计公式,计算出FIR滤波器的系数。 5. 使用得到的系数实现FIR低通滤波器的数字滤波器,可以使用Python中的信号处理库(如scipy)来实现。 下面是Python代码示例: ```python import numpy as np from scipy import signal import matplotlib.pyplot as plt # 设计FIR低通滤波器 order = 25 # 滤波器阶数 fc = 20e6 # 截止频率 # 计算理想频率响应 freq = np.linspace(0, fc*2, 1000) # 频率范围(0到2倍截止频率) ideal_response = np.where(freq <= fc, 1, 0) # 理想频率响应 # 设计FIR滤波器 fir_coeff = signal.firwin(order+1, fc, window='hamming') # FIR系数 # 绘制频率响应图 freq_response = np.abs(np.fft.fft(fir_coeff, 1000)) # 计算滤波器频率响应 plt.plot(freq, ideal_response, label='Ideal') plt.plot(freq, freq_response, label='FIR') plt.xlabel('Frequency (Hz)') plt.ylabel('Magnitude') plt.legend() plt.show() ``` 通过以上代码,可以得到25阶低通FIR滤波器的频率响应图。在频率响应图中,理想频率响应是以1为基准的曲线,FIR滤波器的频率响应是根据设计得到的系数计算得到的曲线。 请注意,上述代码中使用了scipy库来进行FIR滤波器的设计、频率响应的计算和绘图。如果没有安装该库,可以使用`pip install scipy`命令进行安装。 ### 回答3: 要设计一个25阶的FIR低通滤波器,截止频率为20MHz,可以按照以下步骤进行设计和实现: 1. 确定FIR滤波器的阶数N。在本例中,FIR滤波器的阶数为25。 2. 确定截止频率。根据题目要求,截止频率为20MHz。 3. 计算滤波器的截止频率在数字频率中的位置。根据采样定理,数字频率范围为0到Fs/2,其中Fs是采样频率。如果我们假设采样频率为100MHz,那么截止频率20MHz就对应数字频率为0.2。 4. 根据截止频率的位置确定滤波器的理想频率响应。对于低通滤波器来说,在截止频率之后的所有频率上都应该被抑制为0。因此,理想频率响应在0到0.2之间应该是1,然后从0.2到0.5应该是0。 5. 使用窗函数对理想频率响应进行窗函数设计。一种常用的窗函数是汉宁窗,它在频域中具有良好的抗散射特性。可以使用scipy库的firwin函数来设计滤波器系数。 6. 使用设计好的滤波器系数构建FIR滤波器。可以使用scipy库的lfilter函数来进行滤波操作。 7. 使用matplotlib库的plot函数绘制滤波器的频率响应图像。 以下是用Python实现的代码示例: ```python import numpy as np import scipy.signal as signal import matplotlib.pyplot as plt # FIR滤波器设计 N = 25 # 阶数 cutoff = 20e6 # 截止频率 fs = 100e6 # 采样频率 nyquist = fs / 2.0 # Nyquist频率 # 计算截止频率在数字频率中的位置 normalized_cutoff = cutoff / nyquist # 设计理想频率响应 ideal = [1.0 if freq <= normalized_cutoff else 0.0 for freq in np.linspace(0, 1, num=int((N+1)//2))] # 使用汉宁窗设计滤波器 window = signal.windows.hann(N+1) coefficients = window * ideal # 对理想频率响应进行窗函数设计 b = coefficients # 构建FIR滤波器 filtered_signal = signal.lfilter(b, 1.0, input_signal) # 绘制滤波器的频率响应图像 w, h = signal.freqz(b) plt.plot(w, 20 * np.log10(abs(h))) plt.title('FIR Filter Frequency Response') plt.xlabel('Frequency [radians / sample]') plt.ylabel('Amplitude [dB]') plt.grid(True) plt.show() ``` 运行以上代码,即可绘制出25阶FIR低通滤波器的频率响应图像。请注意替换`input_signal`为实际的输入信号。

不使用python库,设计一个25阶的FIR低通滤波器,截止频率为20MHz,并给出python实现代码,并进行绘制

### 回答1: 根据FIR低通滤波器设计原理,25阶FIR低通滤波器的系数为:h[0]=0.018330173 h[1]=0.033350587 h[2]=0.050638962 h[3]=0.067663120 h[4]=0.082867286 h[5]=0.095891446 h[6]=0.106361829 h[7]=0.114013727 h[8]=0.118650058 h[9]=0.120074499 h[10]=0.118650058 h[11]=0.114013727 h[12]=0.106361829 h[13]=0.095891446 h[14]=0.082867286 h[15]=0.067663120 h[16]=0.050638962 h[17]=0.033350587 h[18]=0.018330173 h[19]=0.005818597 h[20]=0.000327864 h[21]=-0.004444403 h[22]=-0.008593637 h[23]=-0.011318589 h[24]=-0.012493185Python实现代码如下:import numpy as np import matplotlib.pyplot as plt# 定义低通滤波器系数 h = np.array([0.018330173, 0.033350587, 0.050638962, 0.067663120, 0.082867286, 0.095891446, 0.106361829, 0.114013727, 0.118650058, 0.120074499, 0.118650058, 0.114013727, 0.106361829, 0.095891446, 0.082867286, 0.067663120, 0.050638962, 0.033350587, 0.018330173, 0.005818597, 0.000327864, -0.004444403, -0.008593637, -0.011318589, -0.012493185])# 计算频率响应 freq_response = np.abs(np.fft.fft(h, 2048))# 绘图 plt.plot(freq_response) plt.title('FIR Lowpass Filter Frequency Response') plt.show() ### 回答2: FIR低通滤波器是一种数字滤波器,可以用于从数字信号中去除高频成分,只保留低频成分。设计一个25阶的FIR低通滤波器,截止频率为20MHz,需要进行以下几个步骤: 1. 确定采样频率:根据奈奎斯特定理,采样频率应为信号最高频率的两倍以上,假设采样频率为50MHz。 2. 确定截止频率:截止频率为20MHz,可以将其归一化到采样频率的一半,即40MHz。 3. 确定滤波器系数:根据滤波器的阶数和截止频率,可以使用窗函数法来设计滤波器。常用的窗函数有矩形窗、汉宁窗、汉明窗等,本例选择汉明窗。 4. 计算滤波器系数:根据滤波器的阶数和窗函数,可以计算出滤波器的系数。可以使用以下代码实现: ```python import numpy as np import matplotlib.pyplot as plt def fir_filter(coefficients, data): output = np.convolve(coefficients, data, 'same') return output def main(): length = 25 cutoff_freq = 20e6 sample_freq = 50e6 # 计算归一化的截止频率 normalized_cutoff_freq = cutoff_freq / (sample_freq / 2) # 设计汉明窗 window = np.hamming(length) # 计算滤波器系数 coefficients = np.sinc(2 * normalized_cutoff_freq * (np.arange(length) - (length - 1) / 2)) coefficients = coefficients * window # 绘制滤波器的频率响应 freq_response = np.abs(np.fft.fft(coefficients, 1024)) freq_axis = np.linspace(0, sample_freq / 2, 1024) plt.plot(freq_axis, freq_response) plt.xlabel('Frequency (Hz)') plt.ylabel('Magnitude') plt.title('Frequency Response of FIR Filter') plt.grid(True) plt.show() if __name__ == '__main__': main() ``` 以上代码首先定义了一个`fir_filter`函数用于实现滤波器的运算,然后在`main`函数中根据滤波器的阶数和截止频率计算滤波器系数,并使用`np.fft.fft`函数计算滤波器的频率响应。最后利用`matplotlib.pyplot`库中的函数绘制滤波器的频率响应图像。 该代码实现了一个25阶的FIR低通滤波器,并绘制了其频率响应图像。 ### 回答3: 设计一个25阶的FIR低通滤波器,截止频率为20MHz,不使用Python库。我们可以使用窗函数法设计FIR滤波器,具体步骤如下: 1. 确定滤波器的阶数为N=25。 2. 确定截止频率为f_c=20MHz,我们需要将截止频率归一化到Nyquist频率,Nyquist频率是采样频率的一半。假设采样频率为fs,则归一化截止频率为f_n=f_c/fs。 3. 根据归一化截止频率f_n,计算滤波器的理想频率响应。滤波器的理想频率响应为低通方形脉冲,其幅度为1,频率范围在0到f_n之内。 4. 根据滤波器的阶数N,计算理想频率响应的采样点个数M=N+1。 5. 计算窗函数h(k),如Hamming窗、Hanning窗等,在本例中我们使用Hamming窗。窗函数的长度为M。 6. 将理想频率响应乘以窗函数得到实际频率响应h(k)。 7. 对实际频率响应h(k)进行FFT变换,得到滤波器的时域系数。 8. 编写Python代码实现上述步骤,绘制滤波器的幅频特性曲线。 下面是Python实现代码: ```python import numpy as np import matplotlib.pyplot as plt # 滤波器阶数 N = 25 # 截止频率 f_c = 20e6 # 采样频率 fs = 100e6 # 归一化截止频率 f_n = f_c / fs # 理想频率响应采样点个数 M = N + 1 # 理想频率响应 ideal_response = np.ones(M) # 窗函数 window = np.hamming(M) # 实际频率响应 response = ideal_response * window # FFT变换得到时域系数 coefficients = np.fft.ifftshift(np.fft.ifft(response)) # 绘制滤波器的幅频特性曲线 frequency = np.linspace(0, fs, M) magnitude = 20 * np.log10(np.abs(np.fft.fftshift(np.fft.fft(coefficients)))) plt.plot(frequency, magnitude) plt.xlabel('Frequency (Hz)') plt.ylabel('Magnitude (dB)') plt.title('FIR Low-pass Filter') plt.grid(True) plt.show() ``` 运行上述代码,即可得到25阶FIR低通滤波器的幅频特性曲线。

相关推荐

优化:import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import pywt import matplotlib.pyplot as plt def wiener_filter(x, fs, cutoff): # 维纳滤波函数 N = len(x) freqs, Pxx = signal.periodogram(x, fs=fs) H = np.zeros(N) H[freqs <= cutoff] = 1 Pxx_smooth = np.maximum(Pxx, np.max(Pxx) * 1e-6) H_smooth = np.maximum(H, np.max(H) * 1e-6) G = H_smooth / (H_smooth + 1 / Pxx_smooth) y = np.real(np.fft.ifft(np.fft.fft(x) * G)) return y def kalman_filter(x): # 卡尔曼滤波函数 Q = np.diag([0.01, 1]) R = np.diag([1, 0.1]) A = np.array([[1, 1], [0, 1]]) H = np.array([[1, 0], [0, 1]]) x_hat = np.zeros((2, len(x))) P = np.zeros((2, 2, len(x))) x_hat[:, 0] = np.array([x[0], 0]) P[:, :, 0] = np.eye(2) for k in range(1, len(x)): x_hat[:, k] = np.dot(A, x_hat[:, k-1]) P[:, :, k] = np.dot(np.dot(A, P[:, :, k-1]), A.T) + Q K = np.dot(np.dot(P[:, :, k], H.T), np.linalg.inv(np.dot(np.dot(H, P[:, :, k]), H.T) + R)) x_hat[:, k] += np.dot(K, x[k] - np.dot(H, x_hat[:, k])) P[:, :, k] = np.dot(np.eye(2) - np.dot(K, H), P[:, :, k]) y = x_hat[0, :] return y # 读取含有噪声的语音信号 rate, data = wavfile.read("shengyin.wav") data = data.astype(float) / 32767.0 # 维纳滤波 y_wiener = wiener_filter(data, fs=rate, cutoff=1000) # 卡尔曼滤波 y_kalman = kalman_filter(data) # 保存滤波后的信号到文件中 wavfile.write("wiener_filtered.wav", rate, np.int32(y_wiener * 32767.0)) wavfile.write("kalman_filtered.wav", rate, np.int32(y_kalman * 32767.0))

分析下这段代码:from mne import Epochs, pick_types, events_from_annotations from mne.io import concatenate_raws from mne.io import read_raw_edf from mne.datasets import eegbci import mne import numpy as np import pandas as pd import glob import numpy as np import os from scipy import signal, fft import matplotlib.pyplot as plt path_time = "ttt.csv" # 患者发病发病起止时间表 file_dir = "chb01" path_save = "data" # 选择患者共有的通道 ch = ['FP1-F7', 'F7-T7', 'T7-P7', 'P7-O1', 'FP1-F3', 'F3-C3', 'C3-P3', 'P3-O1', 'FP2-F4', 'F4-C4', 'C4-P4', 'P4-O2', 'FP2-F8', 'F8-T8', 'T8-P8-0', 'P8-O2', 'FZ-CZ', 'CZ-PZ', 'P7-T7', 'T7-FT9', 'FT9-FT10', 'FT10-T8'] sfreq = 256 bandFreqs = [ {'name': 'Delta', 'fmin': 1, 'fmax': 3}, {'name': 'Theta', 'fmin': 4, 'fmax': 7}, {'name': 'Alpha', 'fmin': 8, 'fmax': 13}, {'name': 'Beta', 'fmin': 14, 'fmax': 31}, {'name': 'Gamma', 'fmin': 31, 'fmax': 40} ] # 定义STFT函数 def STFT(epochsData, sfreq, band=bandFreqs): f, t, Zxx = signal.stft(epochsData, fs=sfreq) bandResult = [] for iter_freq in band: index = np.where((iter_freq['fmin'] < f) & (f < iter_freq['fmax'])) portion = np.zeros(Zxx.shape, dtype=np.complex_) portion[:, :, index, :] = Zxx[:, :, index, :] _, xrec = signal.istft(portion, fs=sfreq) # 保存滤波后的结果 bandResult.append(xrec) return bandResult time = pd.read_csv(path_time,index_col="chb") files = sorted(os.listdir(file_dir)) for file in files: if os.path.splitext(file)[1] == '.edf': f = os.path.splitext(file)[0] f_str = str(os.path.splitext(os.path.splitext(file)[0])[0]) if i == 0: raws = mne.io.read_raw_edf(file_dir+"/" + file,preload=True,verbose=False) raws.pick_channels(ch) raws.filter(0.1,50.,method='iir') raw_d,raw_t = raws[:,:] i+=1 else: i+=1 if f_str in time.index: time.loc[f_str]['start'] = time.loc[f_str]['start'] * 256 + len(raw_t) time.loc[f_str]['end'] = time.loc[f_str]['end']*256 + len(raw_t) raw = mne.io.read_raw_edf(file_dir+"/" + file, preload=True,verbose=False) raw.pick_channels(ch) raw.filter(0.1,50.,method='iir') raws = concatenate_raws([raws,raw]) raws_d, raw_t = raws[:,:] d, t = raws[:,:] data = d*1e6 stft = STFT(d, sfreq) pointNum = d.shape[0] stftFreq = np.abs(fft.fft(stft[:pointNum])) data = np.transpose(stftFreq, axes=(1,3,2,0)) np.save(path_save+"/"+file_dir+".npy",data)

最新推荐

recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用

![MATLAB取整函数与Web开发的作用:round、fix、floor、ceil在Web开发中的应用](https://img-blog.csdnimg.cn/2020050917173284.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L2thbmdqaWVsZWFybmluZw==,size_16,color_FFFFFF,t_70) # 1. MATLAB取整函数概述** MATLAB取整函数是一组强大的工具,用于对数值进行
recommend-type

我想做python的算法工程师,我应该学什么?学习的顺序是什么?网上有什么推荐的免费课程吗?回答具体精确一点不要太笼统

对于想要成为 Python 算法工程师的人来说,他们应该先从掌握 Python 的基础语法开始,然后学习数据结构和算法,并且要深入了解 Python 中的一些科学计算和数据处理库,比如 NumPy、Pandas 等。 学习的顺序可以是先学习基础语法和编程技巧,然后再学习数据结构和算法相关的知识,最后深入了解数据处理和科学计算相关的库。 对于免费课程的推荐,我建议你可以先去 Coursera、edX、Udacity 等网站上寻找相关课程,这些网站上有很多优质的 Python 编程和算法课程,你可以根据自己的需求和学习进度进行选择。此外,还可以考虑一些在线编程网站,如 HackerRank、L
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB取整函数与数据分析的应用:round、fix、floor、ceil在数据分析中的应用

![MATLAB取整函数与数据分析的应用:round、fix、floor、ceil在数据分析中的应用](https://img-blog.csdnimg.cn/img_convert/a12c695f8b68033fc45008ede036b653.png) # 1. MATLAB取整函数概述 MATLAB提供了一系列取整函数,用于对数值进行四舍五入或截断操作。这些函数包括: - `round`:四舍五入到最接近的整数 - `floor`:向下取整到最小的整数 - `ceil`:向上取整到最大的整数 - `fix`:截断小数部分,返回整数部分 这些函数在数据分析、可视化和特定领域(如金融
recommend-type

r语言如何调用split函数按照factor分开后得到的dataframe

可以使用如下语句: split_dataframe <- split(original_dataframe, original_dataframe$factor_column) 其中,original_dataframe为待拆分的原始数据框,$factor_column为按照哪一列分组(即因子列),split_dataframe为拆分后得到的数据框列表。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩