state = torch.FloatTensor(state) TypeError: expected CPU (got CUDA)
时间: 2024-05-15 07:12:15 浏览: 118
这个错误通常是因为你正在尝试在GPU上进行操作,但是你的数据是在CPU上的。要解决这个问题,你需要将你的数据移动到GPU上。你可以使用以下代码将数据从CPU移动到GPU:
```
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
state = state.to(device)
```
这里,我们首先检查是否有可用的GPU,如果有,我们将数据移动到GPU 0 上,否则我们将数据移动到CPU上。
相关问题
class YOLOLayer(nn.Module):FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor但是pycharm提示torch.cuda下面没有FloatTensor?
在 PyCharm 中,当你输入 `torch.cuda.FloatTensor` 时,可能会出现提示 `torch.cuda` 下没有 `FloatTensor` 的情况。这是因为在较新的 PyTorch 版本中,`FloatTensor` 类已被弃用,取而代之的是 `torch.cuda.FloatTensor`。
解决此问题的一种方法是将 `FloatTensor` 替换为 `torch.cuda.FloatTensor`,以匹配当前版本的 PyTorch。你可以这样修改代码:
```python
import torch
cuda = torch.cuda.is_available()
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
# 使用 FloatTensor 进行后续的操作
```
这样修改后,代码应该就不会再提示错误了。记得确保你已正确安装了 PyTorch 和 CUDA,并根据你的环境设置合适的 CUDA 编译器版本。
FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
这段代码是一个三目运算符,判断输入张量x是否在CUDA上运行,如果是,则将FloatTensor设为torch.cuda.FloatTensor类型,否则设为torch.FloatTensor类型。
在PyTorch中,如果你的计算资源支持CUDA的话,可以将张量放到CUDA设备上进行计算,这样会有更快的计算速度。在这种情况下,需要使用torch.cuda.FloatTensor类型的张量。而如果你的计算资源不支持CUDA,那么就需要使用torch.FloatTensor类型的张量。
这段代码的作用是为了将后面的操作适配到CPU或GPU上,使得代码具有更好的通用性和可移植性。如果输入张量在CUDA上运行,那么后面的操作就会在CUDA上进行,否则就在CPU上进行。
阅读全文