def net(X): return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)解释参数含义

时间: 2024-06-05 17:10:35 浏览: 89
这是一个简单的神经网络模型,其中: - X 是输入数据,它的形状是 (batch_size, input_size),其中 batch_size 表示输入数据的批次大小,input_size 表示每个输入数据的特征数量。 - W 是连接输入层和输出层的权重矩阵,它的形状是 (input_size, num_classes),其中 num_classes 表示输出的类别数量。 - b 是偏置向量,它的形状是 (num_classes,),这个向量会被加到输入数据和权重的乘积上。 - softmax 是一个激活函数,它会将神经网络的输出转换成类别概率分布,使得每个类别的概率值都在 [0, 1] 范围内,并且所有类别的概率和为 1。 这个函数的作用是对输入数据 X 进行一次前向传播计算,得到输出结果。具体地,它先将输入数据 X 进行形状变换,将每个输入数据展开成一维向量,然后将这些向量与权重矩阵 W 相乘,再加上偏置向量 b,最后通过 softmax 函数得到每个类别的概率分布。
相关问题

def net(X): return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)

这是一个使用PyTorch实现的神经网络中的前向传播函数。其中,X是输入数据,W是权重矩阵,b是偏置向量。该函数首先将输入数据X进行reshape,将其变成一个二维矩阵,然后将其与权重矩阵W相乘并加上偏置向量b,得到一个新的二维矩阵。最后对这个矩阵进行softmax操作,得到网络的输出结果。softmax操作可以将输出结果转换为概率分布,使其更易于解释和使用。

def net(X): return softmax(torch.matmul(X.reshape((-1, W.shape[0])), W) + b)解释含义

这段代码是一个简单的神经网络的前向传播过程,其中: - `X` 是输入数据,它应该是一个二维张量,其形状为 `(batch_size, input_size)`,其中 `batch_size` 表示批次大小,`input_size` 表示每个输入样本的特征数。 - `W` 和 `b` 是神经网络的模型参数,其中 `W` 是一个二维张量,形状为 `(input_size, num_classes)`,其中 `num_classes` 表示输出的类别数,`b` 是一个一维张量,形状为 `(num_classes,)`,表示每个类别的偏置项。 - `softmax` 是一个 softmax 函数,用于将输出转换为概率分布。 这段代码的具体实现过程为: 1. 将输入数据 `X` 重塑为一个二维张量,形状为 `(batch_size, input_size)`。 2. 将 `X` 与权重矩阵 `W` 相乘,得到一个二维张量,形状为 `(batch_size, num_classes)`。 3. 将偏置项 `b` 广播到与上一步得到的结果形状相同,即 `(batch_size, num_classes)`。 4. 将上一步得到的结果和偏置项相加,得到一个二维张量,形状为 `(batch_size, num_classes)`。 5. 对上一步得到的结果应用 softmax 函数,将其转换为概率分布,得到一个二维张量,形状仍为 `(batch_size, num_classes)`。 最终的输出是经过 softmax 转换后得到的概率分布,表示模型对每个类别的预测概率。
阅读全文

相关推荐

import numpy as np import torch from torch import nn from torch.nn import init def spatial_shift1(x): b, w, h, c = x.size() x[:, 1:, :, :c // 4] = x[:, :w - 1, :, :c // 4] x[:, :w - 1, :, c // 4:c // 2] = x[:, 1:, :, c // 4:c // 2] x[:, :, 1:, c // 2:c * 3 // 4] = x[:, :, :h - 1, c // 2:c * 3 // 4] x[:, :, :h - 1, 3 * c // 4:] = x[:, :, 1:, 3 * c // 4:] return x def spatial_shift2(x): b, w, h, c = x.size() x[:, :, 1:, :c // 4] = x[:, :, :h - 1, :c // 4] x[:, :, :h - 1, c // 4:c // 2] = x[:, :, 1:, c // 4:c // 2] x[:, 1:, :, c // 2:c * 3 // 4] = x[:, :w - 1, :, c // 2:c * 3 // 4] x[:, :w - 1, :, 3 * c // 4:] = x[:, 1:, :, 3 * c // 4:] return x class SplitAttention(nn.Module): def __init__(self, channel=512, k=3): super().__init__() self.channel = channel self.k = k self.mlp1 = nn.Linear(channel, channel, bias=False) self.gelu = nn.GELU() self.mlp2 = nn.Linear(channel, channel * k, bias=False) self.softmax = nn.Softmax(1) def forward(self, x_all): b, k, h, w, c = x_all.shape x_all = x_all.reshape(b, k, -1, c) # bs,k,n,c a = torch.sum(torch.sum(x_all, 1), 1) # bs,c hat_a = self.mlp2(self.gelu(self.mlp1(a))) # bs,kc hat_a = hat_a.reshape(b, self.k, c) # bs,k,c bar_a = self.softmax(hat_a) # bs,k,c attention = bar_a.unsqueeze(-2) # #bs,k,1,c out = attention * x_all # #bs,k,n,c out = torch.sum(out, 1).reshape(b, h, w, c) return out class S2Attention(nn.Module): def __init__(self, channels=512): super().__init__() self.mlp1 = nn.Linear(channels, channels * 3) self.mlp2 = nn.Linear(channels, channels) self.split_attention = SplitAttention() def forward(self, x): b, c, w, h = x.size() x = x.permute(0, 2, 3, 1) x = self.mlp1(x) x1 = spatial_shift1(x[:, :, :, :c]) x2 = spatial_shift2(x[:, :, :, c:c * 2]) x3 = x[:, :, :, c * 2:] x_all = torch.stack([x1, x2, x3], 1) a = self.split_attention(x_all) x = self.mlp2(a) x = x.permute(0, 3, 1, 2) return x

class LSTM_Atten(nn.Module): """搭建Decoder结构""" def init(self, look_back, pre_len): super(LSTM_Atten, self).init() self.lstm = nn.LSTM(input_size=1, # 1个输入特征 hidden_size=128, # 隐状态h扩展为为128维 num_layers=1, # 1层LSTM batch_first=True, # 输入结构为(batch_size, seq_len, feature_size). Default: False ) self.lstmcell = nn.LSTMCell(input_size=128, hidden_size=128) self.drop = nn.Dropout(0.2) # 丢弃率 self.fc1 = nn.Linear(256, 128) self.fc2 = nn.Linear(128, 1) self.look_back = look_back self.pre_len = pre_len self.Softmax = nn.Softmax(dim=1) def forward(self, x): H, (h, c) = self.lstm(x.float(), None) # 编码 h = h.squeeze(0) c = c.squeeze(0) H_pre = torch.empty((h.shape[0], self.pre_len, 128 * 2)).to(device) for i in range(self.pre_len): # 解码 h_t, c_t = self.lstmcell(h, (h, c)) # 预测 H = torch.cat((H, h_t.unsqueeze(1)), 1) h_atten = self.Atten(H) # 获取结合了注意力的隐状态 H_pre[:, i, :] = h_atten # 记录解码器每一步的隐状态 h, c = h_t, c_t # 将当前的隐状态与细胞状态记录用于下一个时间步 return self.fc2(self.fc1(H_pre)).squeeze(2) def Atten(self, H): h = H[:, -1, :].unsqueeze(1) # [batch_size,1,128] H = H[:, -1 - self.look_back:-1, :] # [batch_size,look_back,128] atten = torch.matmul(h, H.transpose(1, 2)).transpose(1, 2) # 注意力矩阵 atten = self.Softmax(atten) atten_H = atten * H # 带有注意力的历史隐状态 atten_H = torch.sum(atten_H, dim=1).unsqueeze(1) # 按时间维度降维 return torch.cat((atten_H, h), 2).squeeze(1) 这段代码如何改能实现多特征的输入

最新推荐

recommend-type

go 生成基于 graphql 服务器库.zip

格奇尔根 首页 > 文件 > gqlgen是什么?gqlgen是一个 Go 库,用于轻松构建 GraphQL 服务器。gqlgen 基于 Schema 优先方法— 您可以使用 GraphQL Schema 定义语言来定义您的 API 。gqlgen 优先考虑类型安全— 您永远不应该看到map[string]interface{}这里。gqlgen 启用 Codegen — 我们生成无聊的部分,以便您可以专注于快速构建您的应用程序。还不太确定如何使用gqlgen?将gqlgen与其他 Go graphql实现进行比较快速启动初始化一个新的 go 模块mkdir examplecd examplego mod init example添加github.com/99designs/gqlgen到项目的 tools.goprintf '//go:build tools\npackage tools\nimport (_ "github.com/99designs/gqlgen"\n _ "github.com/99designs/gqlgen
recommend-type

基于JAVA+SpringBoot+Vue+MySQL的社区物资交易互助平台 源码+数据库+论文(高分毕业设计).zip

项目已获导师指导并通过的高分毕业设计项目,可作为课程设计和期末大作业,下载即用无需修改,项目完整确保可以运行。 包含:项目源码、数据库脚本、软件工具等,该项目可以作为毕设、课程设计使用,前后端代码都在里面。 该系统功能完善、界面美观、操作简单、功能齐全、管理便捷,具有很高的实际应用价值。 项目都经过严格调试,确保可以运行!可以放心下载 技术组成 语言:java 开发环境:idea 数据库:MySql8.0 部署环境:maven 数据库工具:navicat
recommend-type

Angular程序高效加载与展示海量Excel数据技巧

资源摘要信息: "本文将讨论如何在Angular项目中加载和显示Excel海量数据,具体包括使用xlsx.js库读取Excel文件以及采用批量展示方法来处理大量数据。为了更好地理解本文内容,建议参阅关联介绍文章,以获取更多背景信息和详细步骤。" 知识点: 1. Angular框架: Angular是一个由谷歌开发和维护的开源前端框架,它使用TypeScript语言编写,适用于构建动态Web应用。在处理复杂单页面应用(SPA)时,Angular通过其依赖注入、组件和服务的概念提供了一种模块化的方式来组织代码。 2. Excel文件处理: 在Web应用中处理Excel文件通常需要借助第三方库来实现,比如本文提到的xlsx.js库。xlsx.js是一个纯JavaScript编写的库,能够读取和写入Excel文件(包括.xlsx和.xls格式),非常适合在前端应用中处理Excel数据。 3. xlsx.core.min.js: 这是xlsx.js库的一个缩小版本,主要用于生产环境。它包含了读取Excel文件核心功能,适合在对性能和文件大小有要求的项目中使用。通过使用这个库,开发者可以在客户端对Excel文件进行解析并以数据格式暴露给Angular应用。 4. 海量数据展示: 当处理成千上万条数据记录时,传统的方式可能会导致性能问题,比如页面卡顿或加载缓慢。因此,需要采用特定的技术来优化数据展示,例如虚拟滚动(virtual scrolling),分页(pagination)或懒加载(lazy loading)等。 5. 批量展示方法: 为了高效显示海量数据,本文提到的批量展示方法可能涉及将数据分组或分批次加载到视图中。这样可以减少一次性渲染的数据量,从而提升应用的响应速度和用户体验。在Angular中,可以利用指令(directives)和管道(pipes)来实现数据的分批处理和显示。 6. 关联介绍文章: 提供的文章链接为读者提供了更深入的理解和实操步骤。这可能是关于如何配置xlsx.js在Angular项目中使用、如何读取Excel文件中的数据、如何优化和展示这些数据的详细指南。读者应根据该文章所提供的知识和示例代码,来实现上述功能。 7. 文件名称列表: "excel"这一词汇表明,压缩包可能包含一些与Excel文件处理相关的文件或示例代码。这可能包括与xlsx.js集成的Angular组件代码、服务代码或者用于展示数据的模板代码。在实际开发过程中,开发者需要将这些文件或代码片段正确地集成到自己的Angular项目中。 总结而言,本文将指导开发者如何在Angular项目中集成xlsx.js来处理Excel文件的读取,以及如何优化显示大量数据的技术。通过阅读关联介绍文章和实际操作示例代码,开发者可以掌握从后端加载数据、通过xlsx.js解析数据以及在前端高效展示数据的技术要点。这对于开发涉及复杂数据交互的Web应用尤为重要,特别是在需要处理大量数据时。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南

![【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南](https://www.vandyke.com/images/screenshots/securecrt/scrt_94_windows_session_configuration.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT简介与高亮功能概述 SecureCRT是一款广泛应用于IT行业的远程终端仿真程序,支持
recommend-type

如何设计一个基于FPGA的多功能数字钟,实现24小时计时、手动校时和定时闹钟功能?

设计一个基于FPGA的多功能数字钟涉及数字电路设计、时序控制和模块化编程。首先,你需要理解计时器、定时器和计数器的概念以及如何在FPGA平台上实现它们。《大连理工数字钟设计:模24计时器与闹钟功能》这份资料详细介绍了实验报告的撰写过程,包括设计思路和实现方法,对于理解如何构建数字钟的各个部分将有很大帮助。 参考资源链接:[大连理工数字钟设计:模24计时器与闹钟功能](https://wenku.csdn.net/doc/5y7s3r19rz?spm=1055.2569.3001.10343) 在硬件设计方面,你需要准备FPGA开发板、时钟信号源、数码管显示器、手动校时按钮以及定时闹钟按钮等
recommend-type

Argos客户端开发流程及Vue配置指南

资源摘要信息:"argos-client:客户端" 1. Vue项目基础操作 在"argos-client:客户端"项目中,首先需要进行项目设置,通过运行"yarn install"命令来安装项目所需的依赖。"yarn"是一个流行的JavaScript包管理工具,它能够管理项目的依赖关系,并将它们存储在"package.json"文件中。 2. 开发环境下的编译和热重装 在开发阶段,为了实时查看代码更改后的效果,可以使用"yarn serve"命令来编译项目并开启热重装功能。热重装(HMR, Hot Module Replacement)是指在应用运行时,替换、添加或删除模块,而无需完全重新加载页面。 3. 生产环境的编译和最小化 项目开发完成后,需要将项目代码编译并打包成可在生产环境中部署的版本。运行"yarn build"命令可以将源代码编译为最小化的静态文件,这些文件通常包含在"dist/"目录下,可以部署到服务器上。 4. 单元测试和端到端测试 为了确保项目的质量和可靠性,单元测试和端到端测试是必不可少的。"yarn test:unit"用于运行单元测试,这是测试单个组件或函数的测试方法。"yarn test:e2e"用于运行端到端测试,这是模拟用户操作流程,确保应用程序的各个部分能够协同工作。 5. 代码规范与自动化修复 "yarn lint"命令用于代码的检查和风格修复。它通过运行ESLint等代码风格检查工具,帮助开发者遵守预定义的编码规范,从而保持代码风格的一致性。此外,它也能自动修复一些可修复的问题。 6. 自定义配置与Vue框架 由于"argos-client:客户端"项目中提到的Vue标签,可以推断该项目使用了Vue.js框架。Vue是一个用于构建用户界面的渐进式JavaScript框架,它允许开发者通过组件化的方式构建复杂的单页应用程序。在项目的自定义配置中,可能需要根据项目需求进行路由配置、状态管理(如Vuex)、以及与后端API的集成等。 7. 压缩包子文件的使用场景 "argos-client-master"作为压缩包子文件的名称,表明该项目可能还涉及打包发布或模块化开发。在项目开发中,压缩包子文件通常用于快速分发和部署代码,或者是在模块化开发中作为依赖进行引用。使用压缩包子文件可以确保项目的依赖关系清晰,并且方便其他开发者快速安装和使用。 通过上述内容的阐述,我们可以了解到在进行"argos-client:客户端"项目的开发时,需要熟悉的一系列操作,包括项目设置、编译和热重装、生产环境编译、单元测试和端到端测试、代码风格检查和修复,以及与Vue框架相关的各种配置。同时,了解压缩包子文件在项目中的作用,能够帮助开发者高效地管理和部署代码。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【SecureCRT高亮规则深度解析】:让日志输出一目了然的秘诀

![【SecureCRT高亮规则深度解析】:让日志输出一目了然的秘诀](https://www.endace.com/assets/images/learn/packet-capture/Packet-Capture-diagram%203.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT高亮规则概述 ## 1.1 高亮规则的入门介绍 SecureCRT是一款流行的终端仿真程序,常被用来
recommend-type

在用友U8 UFO报表系统中,如何通过格式管理功能实现报表的格式与样式自定义?

格式管理功能是用友U8 UFO报表系统的一个核心特性,允许用户根据具体需求对报表的布局和样式进行个性化定制。具体操作步骤如下: 参考资源链接:[用友U8 UFO报表系统详解与操作指南](https://wenku.csdn.net/doc/11hy4cw3at?spm=1055.2569.3001.10343) 首先,打开用友U8 UFO报表系统,选择需要编辑的报表文件。 进入报表编辑界面后,点击界面上的‘格式’菜单,这里可以设置报表的各种格式参数。 在格式设置中,用户可以定义报表的字体、大小、颜色、