softmax回归pytorch实现,数据集为FashionMNIST
时间: 2024-05-15 16:19:12 浏览: 204
好的,关于softmax回归在PyTorch中的实现,针对FashionMNIST数据集的话,可以按照以下步骤进行。
首先,需要引入相应的包:
```
import torch
import torchvision
from torch.utils.data import DataLoader
import torch.nn.functional as F
```
然后,准备数据集:
```
# 准备训练集和测试集
train_dataset = torchvision.datasets.FashionMNIST(root='./data/FashionMNIST', train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.FashionMNIST(root='./data/FashionMNIST', train=False, transform=torchvision.transforms.ToTensor(), download=True)
# 定义数据加载器
train_loader = DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
```
接下来,定义模型:
```
# 定义模型
class SoftmaxRegression(torch.nn.Module):
def __init__(self):
super(SoftmaxRegression, self).__init__()
self.linear = torch.nn.Linear(784, 10)
def forward(self, x):
x = x.reshape(x.shape[0], -1)
logits = self.linear(x)
return logits
```
然后,定义优化器和损失函数:
```
# 定义优化器和损失函数
model = SoftmaxRegression()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
criterion = torch.nn.CrossEntropyLoss()
```
接着,进行模型训练:
```
# 模型训练
num_epochs = 10
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 前向传播及计算损失
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播及优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}".format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
```
最后,进行模型测试:
```
# 模型测试
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
```
这样,就可以在PyTorch中实现softmax回归,利用FashionMNIST数据集进行模型训练和测试了。
阅读全文