logit_fit = glmval(a,pre_x, 'logit')

时间: 2023-12-11 17:05:58 浏览: 22
这段代码使用glmval函数进行逻辑回归模型的预测,其中a是逻辑回归模型的系数矩阵,pre_x是需要预测的自变量特征数据。'logit'表示使用logit链接函数,返回的是每个样本属于正例的概率值(0到1之间的实数)。在二分类问题中,通常将概率大于等于0.5的样本划分为正例,概率小于0.5的样本划分为负例。
相关问题

linear_fit = LinearRegression().fit(x, y) logit_fit = LogisticRegression().fit(x, y.ravel()) prob_fit = GaussianNB().fit(x, y.ravel()) coef_mat = np.column_stack((prob_fit.theta.T, logit_fit.coef_, linear_fit.coef_)) print(coef_mat) prop_mat = np.column_stack((prob_fit.theta_.T / logit_fit.coef_, prob_fit.theta_.T / linear_fit.coef_, logit_fit.coef_ / linear_fit.coef_)) 解释一下每行代码

这段代码主要用于对输入数据进行三种不同的模型拟合,然后计算模型系数并进行比较和分析。具体每行代码的含义如下: ``` python linear_fit = LinearRegression().fit(x, y) ``` 使用线性回归模型对输入数据 x 和 y 进行拟合,并将拟合结果保存在 linear_fit 变量中。 ``` python logit_fit = LogisticRegression().fit(x, y.ravel()) ``` 使用逻辑回归模型对输入数据 x 和 y 进行拟合,并将拟合结果保存在 logit_fit 变量中。需要注意的是,这里将 y 转换为一维数组,以满足逻辑回归模型的输入要求。 ``` python prob_fit = GaussianNB().fit(x, y.ravel()) ``` 使用高斯朴素贝叶斯模型对输入数据 x 和 y 进行拟合,并将拟合结果保存在 prob_fit 变量中。同样需要将 y 转换为一维数组。 ``` python coef_mat = np.column_stack((prob_fit.theta.T, logit_fit.coef_, linear_fit.coef_)) ``` 将三种模型的系数按列方向拼接成一个矩阵 coef_mat,并将其保存在变量中。其中,prob_fit.theta.T 表示高斯朴素贝叶斯模型的均值向量,logit_fit.coef_ 表示逻辑回归模型的系数向量,linear_fit.coef_ 表示线性回归模型的系数向量。 ``` python print(coef_mat) ``` 输出拼接后的系数矩阵 coef_mat,用于查看模型系数的取值。 ``` python prop_mat = np.column_stack((prob_fit.theta_.T / logit_fit.coef_, prob_fit.theta_.T / linear_fit.coef_, logit_fit.coef_ / linear_fit.coef_)) ``` 计算三种模型系数之间的比例,并将比例矩阵 prop_mat 保存在变量中。其中,prob_fit.theta_.T 表示高斯朴素贝叶斯模型的方差向量,用于计算与其他模型系数的比例。 这段代码主要用于分析和比较三种不同的模型在给定数据上的表现,并通过系数比例来进一步分析模型的特点和差异。

clear,clc %注释1:数据准备 X=xlsread('附件一指标','指标','B2:K124'); X1=xlsread('附件二指标','指标','B2:J303'); train_x = X(:,1:9); %自变量特征数据,分类已知 train_y = X(:,10); %因变量,一列,只有0和1 pre_x = X1(:,1:9); %自变量特征数据,分类未知,用于预测 %注释2:核心代码 a =glmfit(train_x,train_y,'binomial', 'link', 'logit'); %得到系数矩阵 logit_fit = glmval(a,pre_x, 'logit'); %得出概率,大于0.5分到逻辑1,小于0.5分到逻辑0 %注释3:结果整理 pre_y = zeros(size(logit_fit,1),1); %分类结果 for i=1:size(logit_fit,1) if(logit_fit(i,1)<=0.5) pre_y(i,1)=0; else pre_y(i,1)=1; end end

这段代码是用于进行二分类的逻辑回归预测。其中,前面注释1是数据准备部分,包括读取训练数据和预测数据,以及将训练数据分成特征数据和标签数据两部分;注释2是核心代码部分,使用glmfit函数进行逻辑回归模型的训练,并使用glmval函数进行预测;注释3是结果整理部分,将预测结果从概率值转换为0/1分类结果。

相关推荐

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

以下代码有什么错误,怎么修改: import tensorflow.compat.v1 as tf tf.disable_v2_behavior() from PIL import Image import matplotlib.pyplot as plt import input_data import model import numpy as np import xlsxwriter num_threads = 4 def evaluate_one_image(): workbook = xlsxwriter.Workbook('formatting.xlsx') worksheet = workbook.add_worksheet('My Worksheet') with tf.Graph().as_default(): BATCH_SIZE = 1 N_CLASSES = 4 image = tf.cast(image_array, tf.float32) image = tf.image.per_image_standardization(image) image = tf.reshape(image, [1, 208, 208, 3]) logit = model.cnn_inference(image, BATCH_SIZE, N_CLASSES) logit = tf.nn.softmax(logit) x = tf.placeholder(tf.float32, shape=[208, 208, 3]) logs_train_dir = 'log/' saver = tf.train.Saver() with tf.Session() as sess: print("从指定路径中加载模型...") ckpt = tf.train.get_checkpoint_state(logs_train_dir) if ckpt and ckpt.model_checkpoint_path: global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] saver.restore(sess, ckpt.model_checkpoint_path) print('模型加载成功, 训练的步数为: %s' % global_step) else: print('模型加载失败,checkpoint文件没找到!') prediction = sess.run(logit, feed_dict={x: image_array}) max_index = np.argmax(prediction) workbook.close() def evaluate_images(test_img): coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for index,img in enumerate(test_img): image = Image.open(img) image = image.resize([208, 208]) image_array = np.array(image) tf.compat.v1.threading.Thread(target=evaluate_one_image, args=(image_array, index)).start() coord.request_stop() coord.join(threads) if __name__ == '__main__': test_dir = 'data/test/' import glob import xlwt test_img = glob.glob(test_dir + '*.jpg') evaluate_images(test_img)

最新推荐

recommend-type

Java开发案例-springboot-66-自定义starter-源代码+文档.rar

Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar
recommend-type

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg
recommend-type

啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦

啦啦啦啦啦啦啦啦啦啦啦啦啦啦啦
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、