吃豆人蒙特卡洛搜索代码
时间: 2023-09-17 16:15:07 浏览: 108
以下是使用Python编写的吃豆人蒙特卡洛搜索算法代码:
```
import random
class MonteCarloAgent:
def __init__(self, eval_fn, num_rollouts=10, max_depth=30):
self.eval_fn = eval_fn
self.num_rollouts = num_rollouts
self.max_depth = max_depth
def get_action(self, state):
legal_actions = state.get_legal_actions()
if not legal_actions:
return None
action_scores = {}
for action in legal_actions:
total_score = 0
for i in range(self.num_rollouts):
score = self.simulate(state.generate_successor(action), depth=0)
total_score += score
action_scores[action] = total_score / self.num_rollouts
best_action = max(action_scores, key=action_scores.get)
return best_action
def simulate(self, state, depth):
if state.is_win() or state.is_lose() or depth == self.max_depth:
return self.eval_fn(state)
legal_actions = state.get_legal_actions()
if not legal_actions:
return 0
action = random.choice(legal_actions)
return self.simulate(state.generate_successor(action), depth+1)
def mc_eval_fn(state):
return state.get_score()
agent = MonteCarloAgent(eval_fn=mc_eval_fn, num_rollouts=10, max_depth=30)
```
阅读全文