depth_image = Image.fromarray(depth_data)
时间: 2024-06-06 09:11:12 浏览: 212
This line of code converts a numpy array of depth data into a PIL (Python Imaging Library) image object. The numpy array is most likely a two-dimensional array of pixel values representing the depth of the scene captured by a depth sensor. The Image.fromarray() method takes the numpy array as an argument and creates an image object that can be further processed or saved to disk.
相关问题
没有GPU,优化程序class point_cloud_generator(): def init(self, rgb_file, depth_file, save_ply, camera_intrinsics=[312.486, 243.928, 382.363, 382.363]): self.rgb_file = rgb_file self.depth_file = depth_file self.save_ply = save_ply self.rgb = cv2.imread(rgb_file) self.depth = cv2.imread(self.depth_file, -1) print("your depth image shape is:", self.depth.shape) self.width = self.rgb.shape[1] self.height = self.rgb.shape[0] self.camera_intrinsics = camera_intrinsics self.depth_scale = 1000 def compute(self): t1 = time.time() depth = np.asarray(self.depth, dtype=np.uint16).T self.Z = depth / self.depth_scale fx, fy, cx, cy = self.camera_intrinsics X = np.zeros((self.width, self.height)) Y = np.zeros((self.width, self.height)) for i in range(self.width): X[i, :] = np.full(X.shape[1], i) self.X = ((X - cx / 2) * self.Z) / fx for i in range(self.height): Y[:, i] = np.full(Y.shape[0], i) self.Y = ((Y - cy / 2) * self.Z) / fy data_ply = np.zeros((6, self.width * self.height)) data_ply[0] = self.X.T.reshape(-1)[:self.width * self.height] data_ply[1] = -self.Y.T.reshape(-1)[:self.width * self.height] data_ply[2] = -self.Z.T.reshape(-1)[:self.width * self.height] img = np.array(self.rgb, dtype=np.uint8) data_ply[3] = img[:, :, 0:1].reshape(-1)[:self.width * self.height] data_ply[4] = img[:, :, 1:2].reshape(-1)[:self.width * self.height] data_ply[5] = img[:, :, 2:3].reshape(-1)[:self.width * self.height] self.data_ply = data_ply t2 = time.time() print('calcualte 3d point cloud Done.', t2 - t1) def write_ply(self): start = time.time() float_formatter = lambda x: "%.4f" % x points = [] for i in self.data_ply
It that the code is generating a point cloud from an RGB-D image pair. Since you mentioned that you do not have a GPU, one possible optimization could be to use the `numba` library to speed up the computation. Here is how you can modify the code to use `numba`:
1. Import the `numba` library by adding the following line at the top of your code:
```python
import numba
```
2. Add the `@numba.jit(nopython=True)` decorator to the `compute` method to enable `numba` JIT compilation:
```python
@numba.jit(nopython=True)
def compute(self):
# rest of the code
```
3. Modify the `for` loops in the `compute` method to use `numba`'s `prange` function to parallelize the computation across multiple CPU cores:
```python
for i in numba.prange(self.width):
# rest of the code
for i in numba.prange(self.height):
# rest of the code
```
4. Add the `@numba.jit(nopython=True)` decorator to the `write_ply` method as well, since it is also computationally intensive:
```python
@numba.jit(nopython=True)
def write_ply(self):
# rest of the code
```
With these modifications, the `compute` and `write_ply` methods should run faster. However, keep in mind that `numba`'s JIT compilation can take some time during the first function call, so subsequent calls should be faster. Also, note that `numba`'s `prange` function only works with integer indices, so you may need to convert floating-point indices to integers before using them in the loops.
以下代码出现input depth must be evenly divisible by filter depth: 1 vs 3错误是为什么,代码应该怎么改import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 import numpy # 加载FER2013数据集 with open('E:/BaiduNetdiskDownload/fer2013.csv') as f: content = f.readlines() lines = numpy.array(content) num_of_instances = lines.size print("Number of instances: ", num_of_instances) # 定义X和Y X_train, y_train, X_test, y_test = [], [], [], [] # 按行分割数据 for i in range(1, num_of_instances): try: emotion, img, usage = lines[i].split(",") val = img.split(" ") pixels = numpy.array(val, 'float32') emotion = np_utils.to_categorical(emotion, 7) if 'Training' in usage: X_train.append(pixels) y_train.append(emotion) elif 'PublicTest' in usage: X_test.append(pixels) y_test.append(emotion) finally: print("", end="") # 转换成numpy数组 X_train = numpy.array(X_train, 'float32') y_train = numpy.array(y_train, 'float32') X_test = numpy.array(X_test, 'float32') y_test = numpy.array(y_test, 'float32') # 数据预处理 X_train /= 255 X_test /= 255 X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) # 定义VGG16模型 vgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3)) # 微调模型 model = Sequential() model.add(vgg16_model) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(7, activation='softmax')) for layer in model.layers[:1]: layer.trainable = False # 定义优化器和损失函数 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) # 数据增强 datagen = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) datagen.fit(X_train) # 训练模型 model.fit_generator(datagen.flow(X_train, y_train, batch_size=32), steps_per_epoch=len(X_train) / 32, epochs=10) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=32) print("Test Loss:", score[0]) print("Test Accuracy:", score[1])
这个错误是由于卷积层(Conv2D)中的过滤器深度与输入张量深度不匹配导致的。在这个例子中,过滤器深度(filter depth)是3,但是输入张量(input depth)的深度是1,无法整除,因此出现错误。为了解决这个问题,我们需要用一个输入深度能够被过滤器深度整除的模型输入数据。
代码改动可以通过如下方式完成:
1. 修改模型输入数据的维度,以匹配过滤器深度的要求。
2. 转换输入数据的颜色通道,以生成一个3个通道的输入张量。
下面是一个修改后的代码示例:
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.vgg16 import VGG16
import numpy as np
# 修改输入数据的维度
img_rows, img_cols = 32, 32
input_shape = (img_rows, img_cols, 3)
# 载入数据集
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data()
# 将数据转换为浮点数类型
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
# 将像素值归一化到[0, 1]
x_train /= 255
x_test /= 255
# 将类向量转换为二进制类矩阵
num_classes = 10
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
# 生成并优化模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(32, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy',
optimizer=sgd,
metrics=['accuracy'])
# 在训练数据上生成扩增的数据
batch_size = 100
epochs = 5
datagen = ImageDataGenerator(
featurewise_center=False, # 将输入数据集按均值去中心化
samplewise_center=False, # 将每个样本按均值去中心化
featurewise_std_normalization=False, # 将输入数据除以数据集的标准差
samplewise_std_normalization=False, # 将每个样本除以自身的标准差
zca_whitening=False, # ZCA白化
rotation_range=0, # 随机旋转图像范围
width_shift_range=0.1, # 随机水平移动图像范围
height_shift_range=0.1, # 随机垂直移动图像范围
horizontal_flip=True, # 随机翻转图像
vertical_flip=False # # 随机翻转图像
)
datagen.fit(x_train)
model.fit(datagen.flow(x_train, y_train,
batch_size=batch_size),
epochs=epochs,
validation_data=(x_test, y_test),
steps_per_epoch=x_train.shape[0] // batch_size)
# 输出模型的准确率
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])
阅读全文