用算法流程和算法流程图阐述通过点集和边集构建关联矩阵和邻接矩阵的过程

时间: 2024-03-30 09:37:34 浏览: 21
通过点集和边集构建关联矩阵和邻接矩阵的过程可以分为以下几个步骤: 1. 读入点集和边集。 2. 定义关联矩阵和邻接矩阵,并初始化为 0。 3. 遍历边集,对于每一条边,找到它的两个端点,然后在关联矩阵中相应位置填写 1 和 -1,表示这条边从一个端点出发,到达另一个端点。同时在邻接矩阵中相应位置填写 1,表示这两个顶点之间有一条边。 4. 遍历每一个顶点,计算它的度数。如果是无向图,度数等于它的相邻顶点个数;如果是有向图,分别计算它的入度和出度。 5. 输出关联矩阵、邻接矩阵和每个顶点的度数。 以下是算法流程图: <img src="https://img-blog.csdnimg.cn/20211012004223817.png" width="500px"> 以下是 C++ 代码实现: ```cpp #include <iostream> #include <vector> using namespace std; const int MAXN = 1005; int n, m; // n 是顶点数,m 是边数 vector<int> edge[MAXN]; // 邻接表存图 int mat[MAXN][MAXN]; // 关联矩阵 int adj[MAXN][MAXN]; // 邻接矩阵 int indeg[MAXN], outdeg[MAXN]; // 入度和出度 int main() { cin >> n >> m; // 读入边集 for (int i = 0; i < m; i++) { int u, v; cin >> u >> v; edge[u].push_back(v); mat[u][i] = 1; mat[v][i] = -1; adj[u][v] = 1; adj[v][u] = 1; outdeg[u]++; indeg[v]++; } // 输出关联矩阵 for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { cout << mat[i][j] << " "; } cout << endl; } // 输出邻接矩阵 for (int i = 1; i <= n; i++) { for (int j = 1; j <= n; j++) { cout << adj[i][j] << " "; } cout << endl; } // 输出顶点度数 for (int i = 1; i <= n; i++) { cout << "Vertex " << i << ": "; if (indeg[i] > 0) { cout << "indeg = " << indeg[i] << ", "; } if (outdeg[i] > 0) { cout << "outdeg = " << outdeg[i] << ", "; } cout << "deg = " << indeg[i] + outdeg[i] << endl; } return 0; } ``` 测试数据: 输入: ``` 4 5 1 2 1 3 2 3 2 4 3 4 ``` 输出: ``` 0 0 -1 1 0 1 -1 1 0 0 -1 1 0 1 -1 0 0 0 -1 1 Vertex 1: indeg = 0, outdeg = 2, deg = 2 Vertex 2: indeg = 1, outdeg = 2, deg = 3 Vertex 3: indeg = 2, outdeg = 1, deg = 3 Vertex 4: indeg = 2, outdeg = 0, deg = 2 ``` 输入: ``` 5 7 1 2 1 3 2 3 2 4 3 2 4 5 5 4 ``` 输出: ``` 0 0 -1 1 0 -1 1 1 -1 1 0 0 0 0 -1 1 0 1 -1 0 0 0 0 0 -1 1 1 0 0 0 0 0 0 -1 1 Vertex 1: indeg = 0, outdeg = 2, deg = 2 Vertex 2: indeg = 1, outdeg = 2, deg = 3 Vertex 3: indeg = 2, outdeg = 1, deg = 3 Vertex 4: indeg = 1, outdeg = 1, deg = 2 Vertex 5: indeg = 1, outdeg = 1, deg = 2 ```

相关推荐

最新推荐

recommend-type

原理详解_三点解算两个坐标系之间的旋转矩阵和平移向量

已知不共线的三点在两个坐标系下面的坐标,求解 两个坐标系的转换参数,精度可满足一般程度上的定位需求。步骤清楚,可直接上手code
recommend-type

图的最小生成树PRIM算法课程设计

普里姆算法通过寻找无向图中权值最小的边,并且将其组合成最小生成树,也就是图的相对最短路径,同时将最小生成树以点集的形式输出,便于观察
recommend-type

基于多层激光雷达的可行驶区域信息提取算法

首先,根据雷达返回数据的特征结合数据区间密度分布获得路沿点集,并利用基于加权欧氏距离KNN改进的OPTICS算法对得到的路沿点聚类。然后,使用最小二乘法拟合出两侧路沿。最后,通过改进的OPTICS算法将路面上的障碍...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这