写一个输入是4*10000的resnet
时间: 2024-03-13 21:43:46 浏览: 68
好的,下面是一个输入为4*10000的ResNet示例代码:
```python
import torch.nn as nn
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels)
)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out += self.shortcut(residual)
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=1000):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv1d(4, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(self, block, out_channels, blocks, stride=1):
layers = []
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_channels, out_channels))
self.in_channels = out_channels * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
def ResNet50():
return ResNet(ResNetBlock, [3, 4, 6, 3])
def ResNet101():
return ResNet(ResNetBlock, [3, 4, 23, 3])
def ResNet152():
return ResNet(ResNetBlock, [3, 8, 36, 3])
```
这里提供了ResNet50、ResNet101和ResNet152三种不同的模型,你可以根据自己的需求来选择。其中,ResNetBlock是ResNet的基本组成单元,ResNet则是由多个ResNetBlock组成的深度神经网络。在这个模型中,每个输入的数据是一个长度为10000的一维向量,由4个这样的向量组成一个输入。
阅读全文