clear;clear;clc; fs = 8000; % 采样频率 t = 0:1/fs:1 ;% 采样时间 f = 2000; % 方波信号频率 x = square(2*pi*f*t); % 生成方波信号 N = length(x)-1; % 信号长度保证为正整数 % 计算基4FFT和频谱 X = fft(x, N/4); X_mag = abs(X); X_mag_norm = X_mag / max(X_mag); % 计算谐波失真度和谐波的归一化振幅 harmonics = 5; % 要计算的谐波次数 thd = 0; harmonic_amp_norm = zeros(1, harmonics); for k = 1:harmonics harmonic_amp_norm(k) = X_mag_norm(k*4+1); thd = thd + harmonic_amp_norm(k)^2; end thd = sqrt(thd) / harmonic_amp_norm(1) * 10; %打印失真度和归一化振幅图像 fprintf('前5个谐波分量的归一化振幅为:\n'); fprintf('%f\n', harmonic_amp_norm); fprintf('总谐波失真度:\n'); fprintf('%f\n',thd ); % 生成失真度和归一化振幅图像 figure(); subplot(211); stem(0:harmonics-1, harmonic_amp_norm); title('谐波振幅 (归一化)'); xlabel('谐波数'); ylabel('振幅'); subplot(212); plot(X_mag_norm); title(sprintf('总谐波失真度:THD = %.2f%%', thd)); xlabel('0~2000频率'); ylabel('振幅'); %生成dat文件 fid = fopen('C:\ti\myprojects\11\week2.dat','w'); fprintf(fid,'1651 2 0x8000 8000\n'); fprintf(fid,'%d\n',floor(x(1:N)*4095)); fclose(fid);通过生成的dat文件生成ccs中的C语言

时间: 2024-02-24 21:00:04 浏览: 21
您可以使用以下的 C 语言代码将生成的 `week2.dat` 文件读入到数组中,然后将数组中的数据写入到 DAC 寄存器中,以实现方波信号的输出: ```c #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <stdbool.h> #include <math.h> #define SAMPLE_RATE 8000 #define MAX_AMPLITUDE 4095 // 读取文件中的数据,并将数据存储到数组中 bool loadDataFromFile(const char* filename, int16_t* data, uint32_t size) { FILE* file = fopen(filename, "r"); if (file == NULL) { printf("Failed to open file %s\n", filename); return false; } // 读取文件头 int16_t header[4]; if (fread(header, sizeof(int16_t), 4, file) != 4) { printf("Failed to read file header\n"); fclose(file); return false; } // 检查文件头是否合法 if (header[0] != 1651 || header[1] != 2) { printf("Invalid file header\n"); fclose(file); return false; } // 读取数据 for (uint32_t i = 0; i < size; i++) { int16_t value; if (fscanf(file, "%hd", &value) != 1) { printf("Failed to read data at index %d\n", i); fclose(file); return false; } data[i] = value; } fclose(file); return true; } void main(void) { // 读取数据 const char* filename = "C:\\ti\\myprojects\\11\\week2.dat"; uint32_t dataSize = 8000; int16_t data[dataSize]; if (!loadDataFromFile(filename, data, dataSize)) { return; } // 输出数据 for (uint32_t i = 0; i < dataSize; i++) { // 将数据缩放到 DAC 可以接受的范围 int16_t value = data[i] / 4095.0f * MAX_AMPLITUDE + MAX_AMPLITUDE; // 输出到 DAC 寄存器 // TODO: 将 value 输出到 DAC 寄存器 } } ``` 在代码中,`loadDataFromFile` 函数用于读取文件中的数据,并将数据存储到数组中。`main` 函数中,首先读取 `week2.dat` 文件中的数据,然后对数据进行缩放,最后将数据输出到 DAC 寄存器中。由于不清楚您使用的具体的 DSP 芯片型号和开发板类型,因此无法提供具体的输出代码。您需要根据您的硬件和软件条件进行相应的修改,以实现数据的输出。

相关推荐

clc; clear; close all; % 定义参数 fc = 2e3; % 载波频率 fs = 64 * fc; % 采样频率 T = 8 / fc; % 基带信号周期 Ts = 1 / (2 * fc); % 输入信号周期 B = 0.5 / T; % 基带带宽 BbTb = 0.5; % 3dB带宽 % 生成数字序列和基带信号 data = [0 0 1 0 1 0 1 0]; baseband = generate_baseband(data, fs, T); % GMSK调制 modulated_signal = gmsk_modulation(baseband, fc, fs, B, BbTb); % 绘制调制后的波形 figure(1); t = 0:1/fs:length(modulated_signal)/fs-1/fs; plot(t, modulated_signal); xlabel('时间/s'); ylabel('幅度'); title('GMSK调制波形00101010'); % 生成基带信号的函数 % 输入参数: % data: 数字序列 % fs: 采样频率 % T: 基带信号周期 % 输出参数: % baseband: 基带信号 function baseband = generate_baseband(data, fs, T) baseband = zeros(1, length(data) * fs * T); for i = 1:length(data) if data(i) == 0 baseband((i-1)*fs*T+1:i*fs*T) = -1; else baseband((i-1)*fs*T+1:i*fs*T) = 1; end end end % GMSK调制的函数 % 输入参数: % baseband: 基带信号 % fc: 载波频率 % fs: 采样频率 % B: 基带带宽 % BbTb: 3dB带宽 % 输出参数: % modulated_signal: 调制信号 function modulated_signal = gmsk_modulation(baseband, fc, fs, B, BbTb) kf = B / (2*pi); % 调制指数 bt = 0:1/fs:length(baseband)/fs-1/fs; % 基带信号时间序列 gaussian = gausspuls(bt, B/(2*pi*BbTb), 2.5); % 高斯滤波器 baseband_f = filter(gaussian, 1, baseband); % 进行滤波 cumulative_freq = cumsum(baseband_f) / fs * kf; % 计算累积频偏 t = 0:1/fs:length(baseband_f)/fs-1/fs; % 调制信号时间序列 phasor = exp(1j*(2*pi*fc*t + 2*pi*cumulative_freq)); % 产生载波相位 modulated_signal = real(baseband_f .* phasor); % 进行相乘运算,得到调制信号 end % 自定义高斯滤波器函数 % 输入参数: % t: 时间序列 % B: 带宽 % alpha: 音频信号系数 % 输出参数: % g: 高斯函数 function gaussian = gausspuls(t, B, alpha) gaussian = (2 * pi * B * t) .^ alpha .* exp(-(2 * pi * B * t) .^ 2 / (2 * log(2))); end

最新推荐

recommend-type

Python源码-数学美之樱花.py

Python源码-数学美之樱花
recommend-type

蚁群算法(ACO)求解TSP问题,MATLAB源码,代码注释详细,可根据自身需求拓展应用

蚁群算法(ACO)求解TSP问题,MATLAB源码,代码注释详细,可根据自身需求拓展应用
recommend-type

2024年5月最新采集大众点评全国(内地)-学习培训大类-店铺基础信息,93余万家

2024年5月最新采集大众点评全国(内地)-学习培训大类-店铺基础信息,93余万家。此处仅展示1万家,全量也有。 2024年5月最新大众点评店铺基础信息采集。含美食、休闲娱乐、结婚、电影演出赛事、丽人、酒店、亲子、周边游、运动健身、购物、家装、学习培训、医疗健康、爱车、宠物等十几大类共几千万家店铺信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这