用matlab2018a写一个代码要求如下:T是传递函数(12+11*a*s)/(24*a+19*b*s+12s^2)阶跃响应的上升时间,Y是传递函数(12+11*a*s)/(24*a+19*b*s+12s^2)阶跃响应的稳定时间,P是传递函数(12+11*a*s)/(24*a+19*b*s+12s^2)阶跃响应的的反调功率,求变量a,b的最优解,使得(T+Y+P)的值最小
时间: 2023-09-14 07:09:14 浏览: 89
根据题目要求,我们需要求解优化问题。可以使用 MATLAB 的优化工具箱中的 fmincon 函数进行求解。
首先,我们需要将传递函数转化为 MATLAB 中的函数形式,即:
```matlab
function y = myfun(x)
a = x(1);
b = x(2);
s = tf('s');
T = stepinfo((12+11*a*s)/(24*a+19*b*s+12*s^2)).RiseTime;
Y = stepinfo((12+11*a*s)/(24*a+19*b*s+12*s^2)).SettlingTime;
P = 1/(2*pi)*bandwidth((12+11*a*s)/(24*a+19*b*s+12*s^2))^2*(12+11*a*s)^2;
y = T + Y + P;
end
```
其中,x 是变量向量,包含 a 和 b 两个变量。s 是传递函数中的复变量。
函数 myfun 中,我们使用了 stepinfo 函数来获取阶跃响应的上升时间和稳定时间,使用了 bandwidth 函数来获取传递函数的带宽。最终,我们将 T、Y 和 P 相加作为目标函数值。
接下来,我们使用 fmincon 函数来求解最优解:
```matlab
x0 = [1, 1]; % 初始值
lb = [0, 0]; % 下限
ub = [inf, inf]; % 上限
options = optimoptions('fmincon','Display','iter'); % 设置输出信息
[x,fval] = fmincon(@myfun,x0,[],[],[],[],lb,ub,[],options); % 求解
```
其中,x0 是初始值,lb 和 ub 分别是变量的下限和上限。options 中设置了输出信息,便于观察求解过程。最终,我们得到最优解 x 和对应的目标函数值 fval。
完整代码如下:
```matlab
function y = myfun(x)
a = x(1);
b = x(2);
s = tf('s');
T = stepinfo((12+11*a*s)/(24*a+19*b*s+12*s^2)).RiseTime;
Y = stepinfo((12+11*a*s)/(24*a+19*b*s+12*s^2)).SettlingTime;
P = 1/(2*pi)*bandwidth((12+11*a*s)/(24*a+19*b*s+12*s^2))^2*(12+11*a*s)^2;
y = T + Y + P;
end
x0 = [1, 1]; % 初始值
lb = [0, 0]; % 下限
ub = [inf, inf]; % 上限
options = optimoptions('fmincon','Display','iter'); % 设置输出信息
[x,fval] = fmincon(@myfun,x0,[],[],[],[],lb,ub,[],options); % 求解
disp(['a = ', num2str(x(1))]);
disp(['b = ', num2str(x(2))]);
disp(['最小值 = ', num2str(fval)]);
```
阅读全文
相关推荐

















