Producer<String, long> producer = (Producer<String, long>) new KafkaProducer();
时间: 2023-11-18 08:00:19 浏览: 67
这段代码存在类型转换问题。KafkaProducer类并不是实现了Producer<String, long>接口的类,因此将其强制转换为Producer<String, long>类型会导致编译错误或运行时异常。正确的做法应该是使用泛型来指定KafkaProducer的键值类型,例如:
```
Producer<String, Long> producer = new KafkaProducer<>(properties);
```
其中,properties是一个Properties对象,用于配置KafkaProducer的参数。这样就可以正确地创建一个键类型为String,值类型为Long的KafkaProducer对象。
相关问题
ProducerRecord<String, String> record = new ProducerRecord<>("topic", "key", "value", Long.valueOf(timestamp));一直报错
这个问题的具体原因需要看你的代码实现和报错信息。不过,我可以给你一些可能的解决方案:
1. 检查你的Kafka集群是否启动正常,以及你的topic是否已经创建。
2. 检查你的Producer配置是否正确,例如bootstrap.servers、acks、retries等参数是否设置正确。
3. 检查你的序列化器是否正确配置,例如key.serializer和value.serializer是否设置正确。
4. 检查你的时间戳timestamp是否正确,例如是否转换为正确的时间戳格式。
5. 检查你的Producer代码是否有权限访问Kafka集群,例如是否需要进行身份验证等。
如果以上方法都不能解决问题,建议你提供完整的代码和报错信息,这样才能更好地帮助你解决问题。
flink kafka 统计 代码
以下是使用Flink和Kafka进行统计的示例代码。
首先,需要导入相关的依赖:
```xml
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
```
接下来,创建一个Flink的StreamExecutionEnvironment:
```java
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
```
然后,创建一个Kafka的消费者流:
```java
Properties props = new Properties();
props.setProperty("bootstrap.servers", "localhost:9092");
props.setProperty("group.id", "test");
FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("topic", new SimpleStringSchema(), props);
DataStream<String> stream = env.addSource(consumer);
```
接着,对数据流进行处理和转换,例如统计单词出现的次数:
```java
DataStream<Tuple2<String, Integer>> counts = stream
.flatMap((String line, Collector<Tuple2<String, Integer>> out) -> {
for (String word : line.split(" ")) {
out.collect(new Tuple2<>(word, 1));
}
})
.keyBy(0)
.sum(1);
```
最后,将结果写入到Kafka的一个新的Topic中:
```java
Properties producerProps = new Properties();
producerProps.setProperty("bootstrap.servers", "localhost:9092");
FlinkKafkaProducer<Tuple2<String, Integer>> producer = new FlinkKafkaProducer<>("output-topic", new Tuple2SerializationSchema(), producerProps, FlinkKafkaProducer.Semantic.EXACTLY_ONCE);
counts.addSink(producer);
```
完整的代码示例:
```java
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.util.Collector;
import java.util.Properties;
public class WordCount {
public static void main(String[] args) throws Exception {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties props = new Properties();
props.setProperty("bootstrap.servers", "localhost:9092");
props.setProperty("group.id", "test");
FlinkKafkaConsumer<String> consumer = new FlinkKafkaConsumer<>("input-topic", new SimpleStringSchema(), props);
DataStream<String> stream = env.addSource(consumer);
DataStream<Tuple2<String, Integer>> counts = stream
.flatMap((String line, Collector<Tuple2<String, Integer>> out) -> {
for (String word : line.split(" ")) {
out.collect(new Tuple2<>(word, 1));
}
})
.keyBy(0)
.sum(1);
Properties producerProps = new Properties();
producerProps.setProperty("bootstrap.servers", "localhost:9092");
FlinkKafkaProducer<Tuple2<String, Integer>> producer = new FlinkKafkaProducer<>("output-topic", new Tuple2SerializationSchema(), producerProps, FlinkKafkaProducer.Semantic.EXACTLY_ONCE);
counts.addSink(producer);
env.execute("Word Count");
}
private static class Tuple2SerializationSchema implements KafkaSerializationSchema<Tuple2<String, Integer>> {
@Override
public ProducerRecord<byte[], byte[]> serialize(Tuple2<String, Integer> element, @Nullable Long timestamp) {
return new ProducerRecord<>("output-topic", element.f0.getBytes(), element.f1.toString().getBytes());
}
}
}
```
阅读全文