将下面代码改写成显示27张图片 load mri; M1 = D(:,64,:,:); siz1 = size(M1); M2 = reshape(M1,[128 27]); siz2 = size(M2); T0 = maketform('affine', [0 -2.5; 1 0; 0 0]); %旋转和缩放 R2 = makeresampler({'cubic', 'nearest'}, 'fill'); %插值 M3 = imtransform(M2,T0,R2); %将T0和R2传递给M2补偿提高分辨率 figure imshow(M3,map); title('矢状位')

时间: 2024-03-01 13:53:44 浏览: 83
以下是改写后的代码,可以显示27张图片: ```matlab load mri; for i=1:27 M1 = D(:,64,:,i); siz1 = size(M1); M2 = reshape(M1,[128 27]); siz2 = size(M2); T0 = maketform('affine', [0 -2.5; 1 0; 0 0]); R2 = makeresampler({'cubic', 'nearest'}, 'fill'); M3 = imtransform(M2,T0,R2); subplot(3,9,i); imshow(M3,map); title(['矢状位',num2str(i)]); end ``` 这段代码使用了一个 `for` 循环,每次取出一张图片进行处理并显示。其中 `subplot` 函数用于将27张图片显示在一张图中的不同位置,方便观察。
相关问题

修正下面代码load mri; montage(D,map) title('轴状位'); M1 = D(:,:,64,:); siz1 = size(M1); M2 = reshape(M1,[128 27]); siz2 = size(M2); figure imshow(M2,map); title('矢状位 - Raw Data');

以下是已修正的MATLAB代码: ``` load mri; montage(D,map); title('轴状位'); M1 = D(:,:,:,1); % 获取第一帧数据 M2 = squeeze(M1(:,:,64)); % 提取矢状位在64处的图像 siz2 = size(M2); % 获取图像尺寸信息 figure; imshow(M2,map); title('矢状位 - Raw Data'); ``` 修正后的代码将M1的第四维下标修改为1,以获取第一帧MRI数据。然后使用`squeeze`函数将第三维(z轴)上取值为64的二维图像提取出来,并将结果保存在M2中。接着使用`size`函数获取M2的尺寸信息,并将结果保存在siz2中。最后,使用`figure`函数创建一个新的图形窗口,并使用`imshow`函数展示M2图像,并使用`title`函数添加一个标题“矢状位 - Raw Data”。

请提取D中,矢状位在64处的断层图像M1 = D(…, …, …, …); siz1 = size(M1);

假设MRI图像数据D是一个四维矩阵(x轴、y轴、z轴和时间),可以使用以下代码来提取矢状位在64处的断层图像: ``` M1 = squeeze(D(:, :, 64, :)); % 提取矢状位在64处的图像 siz1 = size(M1); % 获取图像尺寸信息 ``` 首先使用`squeeze`函数将MRI图像数据D在第三维(z轴)上取值为64的二维图像提取出来,并将结果保存在M1中。然后使用`size`函数获取M1的尺寸信息,并将结果保存在siz1中。
阅读全文

相关推荐

以下这段代码为何RE#include<bits/stdc++.h> using namespace std; const int mx=1e5+1; int n,Q,x,y,d[mx],fa[mx],siz[mx],ev[mx],a[mx],son[mx],dfn[mx],cnt,id[mx],top[mx],ans[mx]; struct edge{int c,w,id,u,v;}e[mx*2]; struct que{int u,v,x,y;}q[mx*2]; struct tree{int l,r,lzy1,lzy2;}t[mx*4]; vector<edge> v[mx]; vector<int> es[mx]; vector<int> qs[mx]; //以下树剖 void dfs1(int f,int u) { d[u]=d[f]+1,fa[u]=f,siz[u]=1; int len=v[u].size(); for(int i=0;i<len;i++) { edge next=v[u][i]; int nv=next.v; if(nv==f) continue; ev[next.id]=nv,a[nv]=next.w; dfs1(u,nv); siz[u]+=siz[nv]; if(siz[nv]>siz[son[u]]) son[u]=nv; } } void dfs2(int f,int u) { dfn[u]=++cnt,id[cnt]=u,top[u]=f; if(son[u]) dfs2(f,son[u]); int len=v[u].size(); for(int i=0;i<len;i++) { int nv=v[u][i].v; if(nv==fa[u] || nv==son[u]) continue; dfs2(nv,nv); } } //以上树剖 //以下线段树 void pushup1(int x){t[x].lzy1=t[x<<1].lzy1+t[x<<1|1].lzy1;} void pushup2(int x){t[x].lzy2=t[x<<1].lzy2+t[x<<1|1].lzy2;} void build(int x,int l,int r) { t[x].l=l,t[x].r=r; if(l==r) { t[x].lzy1=a[id[l]],t[x].lzy2=0; return; } int mid=(l+r)/2; build(x<<1,l,mid);build(x<<1|1,mid+1,r); pushup1(x); } void chang1(int x,int obx,int w) { if(t[x].l==t[x].r){t[x].lzy1=w;return;} int mid=(t[x].l+t[x].r)>>1; if(obx<=mid) chang1(x<<1,obx,w); else chang1(x<<1|1,obx,w); pushup1(x); } void chang2(int x,int obx,int w) { if(t[x].l==t[x].r){t[x].lzy2=w;return;} int mid=(t[x].l+t[x].r)>>1; if(obx<=mid) chang2(x<<1,obx,w); else chang2(x<<1|1,obx,w); pushup2(x); } int find1(int x,int l,int r) { if(l<=t[x].l && r>=t[x].r) return t[x].lzy1; int mid=(l+r)>>1,s=0; if(l<=mid) s+=find1(x<<1,l,r); if(r>mid) s+=find1(x<<1|1,l,r); return s; } int find2(int x,int l,int r) { if(l<=t[x].l && r>=t[x].r) return t[x].lzy2; int mid=(l+r)>>1,s=0; if(l<=mid) s+=find2(x<<1,l,r); if(r>mid) s+=find2(x<<1|1,l,r); return s; } //以上线段树 int fans(int x,int y,int k) { int ans=0; while(top[x]!=top[y]) { if(d[top[x]]<d[top[y]]) swap(x,y); ans+=find1(1,dfn[top[x]],dfn[x]); ans+=find2(1,dfn[top[x]],dfn[x]); x=fa[top[x]]; } if(d[x]>d[y]) swap(x,y); if(x!=y) { ans+=find1(1,dfn[x]+1,dfn[y]); ans+=k*find2(1,dfn[x]+1,dfn[y]); } return ans; } int main() { cin >> n >> Q; for(int i=1;i<n;i++) { cin >> e[i].u >> e[i].v >> e[i].c >> e[i].w; e[i].id=i; v[e[i].u].push_back({e[i].u,e[i].v,e[i].c,e[i].w,e[i].id}); v[e[i].v].push_back({e[i].v,e[i].u,e[i].c,e[i].w,e[i].id}); es[e[i].c].push_back(i); } for(int i=1;i<=Q;i++) { cin >> q[i].x >> q[i].y >> q[i].u >> q[i].v; qs[q[i].x].push_back(i); } dfs1(1,1);dfs2(1,1);build(1,1,n); for(int i=1;i<n;i++) { int len=es[i].size(); for(int j=0;j<len;j++) { int k=ev[es[i][j]]; find1(1,dfn[k],0); find2(1,dfn[k],1); } for(int j=0;j<len;j++) { int k=qs[i][j]; ans[k]=fans(q[k].u,q[k].v,q[k].y); } for(int j=0;j<len;j++) { int k=ev[es[i][j]]; find1(1,dfn[k],e[es[i][j]].w); find2(1,dfn[k],0); } } for(int i=1;i<=Q;i++) cout<<ans[i]<<"\n"; return 0; }

简析代码:void FCFS(PCB pro[], int num) { int time,done_time; int i,count,tt,pronum; float sum_T_time,sum_QT_time; PCB *curpro,*temp_PCB; printf("\n\t\t\t\t\t先来先服务算法进程调度模拟\n\n"); printf("\t————————————————————————————————————————————————\n"); count=0; PCB pro2[100]; sortWithEnterTime(pro, num); PCBQueue* queue = (PCBQueue*)malloc(sizeof(PCBQueue)); Queueinit(queue); EnterQueue(queue, &pro[0]); time = pro[0].arrivetime; pronum = 1; sum_T_time = 0, sum_QT_time = 0; while (queue->size > 0) { curpro = poll(queue); if (time < curpro->arrivetime){ time = curpro->arrivetime; } done_time = time + curpro->running_time; curpro->start_time=time; curpro->done_time=done_time; curpro->zztime = done_time - curpro->arrivetime; curpro->dqzztime = curpro->zztime / curpro->running_time; sum_T_time += curpro->zztime; sum_QT_time += curpro->dqzztime; for (tt = time; tt <= done_time && pronum < num; tt++) { if (tt >= pro[pronum].arrivetime) { EnterQueue(queue, &pro[pronum]); pronum++; } } CopyProgram(&pro2[count],curpro); PrintRunningprogram(&pro2[count]); count++; if(queue->size!=0) { printf("\t就绪队列:\n"); printf("\t————————————————————————————————————————————————\n"); printf("\t进程 到达时间 服务时间 优先级\n"); temp_PCB=queue->firstProg->next; for(i=queue->size; i>0; i--) { printf("\t%s\t%d\t%d\t%d\n",temp_PCB->name,temp_PCB->arrivetime,temp_PCB->running_time,temp_PCB->priority); temp_PCB=temp_PCB->next; } printf("\t————————————————————————————————————————————————\n"); printf("\n\n\n"); } else { printf("\t无进程处于就绪状态!\n"); printf("\t————————————————————————————————————————————————\n\n\n"); } time += curpro->running_time; if (queue->siz

大家在看

recommend-type

VITA 62.0.docx

VPX62 电源标准中文
recommend-type

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip 【环境配置】 1、下载安装anaconda、pycharm 2、打开anaconda,在anaconda promt终端,新建一个python3.9的虚拟环境 3、激活该虚拟空间,然后pip install -r requirements.txt,安装里面的软件包 4、识别检测['Drowning', 'Person out of water', 'Swimming'] 【运行操作】 以上环境配置成功后,运行main.py,打开界面,自动加载模型,开始测试即可 可以检测本地图片、视频、摄像头实时画面 【数据集】 本项目使用的数据集下载地址为: https://download.csdn.net/download/DeepLearning_/89398245 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
recommend-type

公安大数据零信任体系设计要求.pdf

公安大数据零信任体系设计要求,本规范性技术文件规定了零信任体系的整体设计原则、设计目标、总体架构、整体能力要求和安全流程。用以指导公安大数据智能化访问控制体系的规划、设计、建设、实施、应用、运营等工作。 本规范性技术文件适用于参与公安机关大数据智能化访问控制体系建设工作的各级公安机关、相关单位、以及各类技术厂商等单位及其人员。
recommend-type

批量标准矢量shp互转txt工具

1.解压运行exe即可。(适用于windows7、windows10等操作系统) 2.标准矢量shp,转换为标准txt格式 4.此工具专门针对自然资源系统:建设用地报批、设施农用地上图、卫片等系统。
recommend-type

HN8145XR-V5R021C00S260

HN8145XR_V5R021C00S260固件及V5使能工具等 赚分下文件

最新推荐

recommend-type

mysql Sort aborted: Out of sort memory, consider increasing server sort buffer size的解决方法

当MySQL在处理这些查询时,它会使用一个名为`sort_buffer_size`的内存缓冲区。如果查询所需的排序内存超过了这个缓冲区的大小,MySQL就会抛出上述错误。 `sort_buffer_size`是每个连接(session)级别的参数,即每...
recommend-type

mysql read_buffer_size 设置多少合适

MySQL中的`read_buffer_size`是一个重要的服务器配置参数,它直接影响到数据库在处理顺序扫描查询时的性能。这个参数定义了当MySQL执行顺序读取操作,例如从磁盘读取数据文件时,用于缓冲数据的内存大小。合适的设置...
recommend-type

MySQL8.0内存相关参数总结

- **tmp_table_size**:当内存中临时表超出此大小时,MySQL将转而使用磁盘上的MyISAM表。 3. **其他内存相关参数**: - **innodb_change_buffering**:控制InnoDB的变更缓冲,减少随机I/O,提高性能。可以通过...
recommend-type

Keras 数据增强ImageDataGenerator多输入多输出实例

本实例将探讨如何利用ImageDataGenerator进行多输入多输出的数据增强。 首先,我们要导入必要的库,包括os、sys、gc、time、cv2、random、numpy、pandas、seaborn、matplotlib.pyplot以及tqdm等。特别引入了get_...
recommend-type

关于给Tomcat设置maxPostSize的问题及注意事项

解决方案通常是根据Tomcat的具体版本来调整`maxPostSize`的值,或者在需要不受限制的情况下将其设置为`-1`。 总之,理解和正确配置`maxPostSize`对于管理Tomcat服务器的数据传输限制至关重要。确保根据你的业务需求...
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。