def modpow(b, e, n): #大数快速幂取模 # 查找e的长度 tst = 1 siz = 0 while e >= tst: tst <<= 1 siz += 1 siz -= 1 # calculate the result r = 1 for i in range(siz, -1, -1): r = (r * r) % n if (e >> i) & 1: r = (r * b) % n return r什么意思

时间: 2024-02-14 07:14:12 浏览: 66
这是一个 Python 函数,用于计算 `(b^e) % n` 的值,即将 b 的 e 次方对 n 取余数的结果。 具体来说,这个函数使用了快速幂算法来计算幂的值,以避免在计算大的幂时出现性能问题。快速幂算法的基本思想是将幂以二进制表示,然后按位计算幂的值。具体实现中,首先找到 e 的二进制表示的最高位,然后从最高位开始依次计算幂的值,直到最低位。 在这个函数中,首先使用一个循环来确定 e 的长度,并计算出最高位的位置。然后使用另一个循环从最高位开始依次计算幂的值,并在必要时乘以 b,最后将结果对 n 取余数并返回。 其中,变量 b 表示底数,变量 e 表示指数,变量 n 表示模数。
相关问题

帮我理解以下代码:##计算训练集和测试集的样本数 ##x_train.shape[0]表示训练数据集x_train的样本数量。其中,x_train是一个二维数组,第一维表示样本的数量,第二维表示每个样本的特征数量。因此,x_train.shape[0]就是获取x_train数组的第一维大小,即样本数量。 train_num,test_num = x_train.shape[0],x_test.shape[0] ##存储结果 second_level_train_set = np.zeros((train.num,)) second_level_test_set = np.zeros((test_num,)) test_nfolds_sets = np.zeros((test_num,n_folds)) ##K折交叉验证 kf = KFold(n_splits = n_folds) ##依次使用K折数据集训练数据 for i,(train_index,test_index)in enumerate(kf.split(x_train)): ##切分K折数据 x_tra,y_tra = x_train[train_index],y_train[train_index] x_tes,y_tes = x_train[test_index],y_train[test_index] ##训练数据 clf.fit(x_tra,y_tra) ##对训练集和测试集进行预测 second_level_train_set[test_index] = clf.predict(x_tst) test_nfolds_sets[:,i] = clf.predict(x_test) ##计算返回的均值 second_level_test_set[:] = test_nfolds_sets.mean(axis = 1) return second_level_train_test_set,second_level_test_set

这段代码实现的是Stacking中的第一步,即对基础模型进行K折交叉验证并生成元特征。具体来说,代码中首先计算了训练集和测试集的样本数,然后初始化了三个用于存储结果的数组。接下来,使用K折交叉验证对基础模型进行训练,并对训练集和测试集进行预测,将预测结果保存到相应的数组中。最后,计算了测试集预测结果的均值,并将训练集和测试集的元特征作为函数的返回值。 值得注意的是,代码中使用了一个循环来依次使用K折数据集训练数据,并将每一次的预测结果保存到对应的位置上。这里的clf指代的是一个基础模型,它在训练和预测时需要与具体的应用场景相关。另外,mean()函数用于计算测试集预测结果的均值。

请帮我解释这段代码:#include "cmd_parse.h" static int bufed_uart_rcv_1B(void *ref, uint8_t *c) { BUFED_UART_T *h = ref; return bufed_uart_rcv(h, c, 1); } CMD_PARSE_T *cmd_ps_1; osThreadId rx_cmp_tst_hd; extern RNG_HandleTypeDef hrng; void uart1_fast_loopback_test(uint32_t fatfs_ok) { uint8_t *tx_buf, *rx_buf; tx_buf= pvPortMalloc(URT_TST_BUF_LEN); if(tx_buf == NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_00; } rx_buf= pvPortMalloc(URT_TST_BUF_LEN); if(rx_buf == NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_01; } FIL *fp = pvPortMalloc(sizeof(*fp)); if(fp==NULL){ GS_LOGPRT_ERR("tx_buf pvPortMalloc failed.\r\n"); goto err_02; } bfdurt_tst_01.rx_buf = rx_buf; bfdurt_tst_01.tx_buf = tx_buf; bfdurt_tst_01.buf_size = URT_TST_BUF_LEN; bfdurt_tst_01.err_cnt = 0; for(uint32_t i = 0; i < URT_TST_BUF_LEN; i++) tx_buf[i] = HAL_RNG_GetRandomNumber(&hrng); osThreadDef(rx_cmp_tst_tsk, uart_rx_cmp, osPriorityBelowNormal, 0, 200); rx_cmp_tst_hd = osThreadCreate(osThread(rx_cmp_tst_tsk), &(bfdurt_tst_ptr)); osDelay(120); uint32_t lp; cmdprs_init(&cmd_ps_1, 256, &RBFD_UART_GET_UART(urt2), bufed_uart_rcv_1B); uint32_t f_num = 0; size_t n; while(1){ GS_Printf("Input test data length\r\n"); cmdprs_read_1line(cmd_ps_1); char ch; int scn = sscanf((void*)cmd_ps_1->buf->data,"%lu%c", &lp, &ch); if(scn == 2){ if(ch == 'M' || ch == 'm') lp <<= 10U; else if(ch == 'G' || ch == 'g') lp <<= 20U; else if(ch == 'K' || ch == 'k') ; else lp >>= 10U; lp /= (URT_TST_BUF_LEN/1024); }else{ GS_Printf("ERROR\r\n"); break; }

这段代码包含了一些头文件的引用,并定义了一些变量和函数。下面是代码的解释: 1. `#include "cmd_parse.h"` 是一个预处理指令,用于包含头文件 "cmd_parse.h"。 2. `static int bufed_uart_rcv_1B(void *ref, uint8_t *c)` 是一个静态函数,接收一个字节的数据并存储在指针 `c` 指向的位置。它通过调用函数 `bufed_uart_rcv` 来实现。 3. `CMD_PARSE_T *cmd_ps_1;` 声明了一个指向 `CMD_PARSE_T` 类型的指针变量 `cmd_ps_1`。 4. `osThreadId rx_cmp_tst_hd;` 声明了一个 `osThreadId` 类型的变量 `rx_cmp_tst_hd`,用于存储线程的标识符。 5. `extern RNG_HandleTypeDef hrng;` 是一个外部变量的声明,表示 `hrng` 是一个 `RNG_HandleTypeDef` 类型的变量,这个变量在其他地方定义。 6. `void uart1_fast_loopback_test(uint32_t fatfs_ok)` 是一个函数,用于进行 UART1 快速回环测试。它接受一个名为 `fatfs_ok` 的参数。 7. 在函数内部,定义了指向缓冲区的指针 `tx_buf` 和 `rx_buf`,并使用函数 `pvPortMalloc` 分配了内存空间。 8. 进行了内存分配的错误检查,在出现错误时跳转到标签 `err_00`、`err_01` 或 `err_02` 进行错误处理。 9. 分配了一个 `FIL` 结构体的内存空间,并进行了错误检查。 10. 给全局变量 `bfdurt_tst_01` 的成员赋值,包括 `rx_buf`、`tx_buf`、`buf_size` 和 `err_cnt`。 11. 使用循环为 `tx_buf` 数组赋值随机数。 12. 使用 `osThreadDef` 定义了一个线程任务,名为 `rx_cmp_tst_tsk`,并创建了一个线程实例 `rx_cmp_tst_hd`。 13. 使用 `osDelay` 函数进行延迟。 14. 调用函数 `cmdprs_init` 进行命令解析器的初始化,将结果赋值给指针变量 `cmd_ps_1`。 15. 进入一个无限循环,在循环中进行一些输入输出操作和逻辑判断。 总体来说,这段代码主要是用于进行 UART1 快速回环测试,并包含了一些内存分配、线程创建和命令解析的操作。
阅读全文

相关推荐

def compute_mAP(trn_binary, tst_binary, trn_label, tst_label): """ compute mAP by searching testset from trainset https://github.com/flyingpot/pytorch_deephash """ for x in trn_binary, tst_binary, trn_label, tst_label: x.long() AP = [] Ns = torch.arange(1, trn_binary.size(0) + 1) Ntest = torch.arange(1, tst_binary.size(0) + 1) print("trn_binary.size(0):",trn_binary.size(0)) print("tst_binary.size(0):", tst_binary.size(0)) print("Ns:",Ns) print("Ns:", Ntest) # print("Ns(train):",Ns) for i in range(tst_binary.size(0)): query_label, query_binary = tst_label[i], tst_binary[i] # 把测试图像编码和标签赋值给->查询图像编码和标签 _, query_result = torch.sum((query_binary != trn_binary).long(), dim=1).sort() # 判断查询图像编码是否等于训练图像编码,相等的总和,并排序。 print("查询标签-----------------------------------------------------:",query_label) print("查询二进制:", query_binary) print(len(query_binary)) print("查询结果:",query_result) print("是否相等:",query_binary != trn_binary) print("查询结果1:", torch.sum((query_binary != trn_binary).long(), dim=1)) print("查询结果2:",torch.sum((query_binary != trn_binary).long(), dim=1).sort()) correct = (query_label == trn_label[query_result]).float() # 正确匹配的二进制编码个数 print("trn_label[query_result]:",trn_label[query_result]) num_ones = torch.sum(correct == 1) print("查询正确的个数:",num_ones) print("查询正确:",correct) P = torch.cumsum(correct, dim=0) / Ns print("torch.cumsum(correct, dim=0)",torch.cumsum(correct, dim=0)) print("查询正确/Ns",torch.Tensor(P)) #每个位置的精度 P AP.append(torch.sum(P * correct) / torch.sum(correct)) # print("---:",AP) acc = num_ones / tst_binary.size(0) print("ACC================================== ", acc) mAP = torch.mean(torch.Tensor(AP)) return mAP 请问怎么将这段代码改成EER评估指标的代码

#include "tst_test.h" #include "tst_safe_macros.h" #include "lapi/sched.h" #define MAX_TRIES 1000 static void child_func(void) { int fd, len, event_found, tries; struct sockaddr_nl sa; char buffer[4096]; struct nlmsghdr *nlh; /* child will listen to a network interface create/delete/up/down events */ memset(&sa, 0, sizeof(sa)); sa.nl_family = AF_NETLINK; sa.nl_groups = RTMGRP_LINK; fd = SAFE_SOCKET(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE); SAFE_BIND(fd, (struct sockaddr *) &sa, sizeof(sa)); /* waits for parent to create an interface */ TST_CHECKPOINT_WAKE_AND_WAIT(0); /* * To get rid of "resource temporarily unavailable" errors * when testing with -i option */ tries = 0; event_found = 0; nlh = (struct nlmsghdr *) buffer; while (tries < MAX_TRIES) { len = recv(fd, nlh, sizeof(buffer), MSG_DONTWAIT); if (len > 0) { /* stop receiving only on interface create/delete event */ if (nlh->nlmsg_type == RTM_NEWLINK || nlh->nlmsg_type == RTM_DELLINK) { event_found++; break; } } usleep(10000); tries++; } SAFE_CLOSE(fd); if (event_found) tst_res(TPASS, "interface changes detected"); else tst_res(TFAIL, "failed to detect interface changes"); exit(0); } static void test_netns_netlink(void) { /* unshares the network namespace */ SAFE_UNSHARE(CLONE_NEWNET); if (SAFE_FORK() == 0) child_func(); /* wait until child opens netlink socket */ TST_CHECKPOINT_WAIT(0); /* creates TAP network interface dummy0 */ if (WEXITSTATUS(system("ip tuntap add dev dummy0 mode tap"))) tst_brk(TBROK, "adding interface failed"); /* removes previously created dummy0 device */ if (WEXITSTATUS(system("ip tuntap del mode tap dummy0"))) tst_brk(TBROK, "removing interface failed"); /* allow child to continue */ TST_CHECKPOINT_WAKE(0); tst_reap_children(); } static struct tst_test test = { .test_all = test_netns_netlink, .needs_checkpoints = 1, .needs_root = 1, .forks_child = 1, .needs_kconfigs = (const char *[]) { "CONFIG_NET_NS=y", "CONFIG_TUN", NULL }, };

最新推荐

recommend-type

IEEE 802.1Qbv 2015

IEEE 802.1Qbv是IEEE 802.1Q标准的一个重要修正案,它专注于在网络中实现时间敏感流量(Time-Sensitive Traffic, TST)的高效处理。这个标准于2015年被IEEE计算机学会的局域网/城域网标准委员会批准,旨在为局域网和...
recommend-type

JS组件Bootstrap实现弹出框和提示框效果代码

&lt;div class="modal fade" id="myModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel"&gt; &lt;div class="modal-dialog" role="document"&gt; &lt;div class="modal-content"&gt; &lt;div class="modal-header"&gt; ...
recommend-type

bootstrap实现图片自动轮播

&lt;img src="airplane1.jpg" /&gt; &lt;/div&gt; &lt;div class="item"&gt; &lt;img src="airplane2.jpg" /&gt; &lt;/div&gt; &lt;div class="item"&gt; &lt;img src="airplane3.jpg" /&gt; &lt;/div&gt; &lt;/div&gt; &lt;!-- Controls --&gt; ... &lt;/div&gt; ``` `data...
recommend-type

Bootstrap3制作自己的导航栏

通过以上介绍,我们可以了解到Bootstrap3的导航栏功能强大且易于定制,可以帮助开发者快速构建美观且响应式的网站头部导航。无论是简单的链接列表还是复杂的表单集成,Bootstrap3都提供了简洁的HTML结构和预定义的...
recommend-type

全面解析多种Bootstrap图片轮播效果

&lt;div class="carousel-caption"&gt;标题 1&lt;/div&gt; &lt;/div&gt; ``` 3. **自定义轮播效果** Bootstrap允许开发者自定义轮播的过渡动画、速度、间隔时间以及是否循环播放。通过修改CSS样式和JavaScript事件,可以实现更...
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。