如何生成对抗网络扩充数据集及其代码
时间: 2023-07-27 09:06:11 浏览: 131
生成对抗网络(GAN)代码附python代码+数据集代码简单易学适合新手.zip
生成对抗网络(GAN)可以用于生成新的图像数据,从而扩充数据集。下面是一个简单的GAN代码示例,用于生成手写数字图像:
```python
import tensorflow as tf
from tensorflow.keras import layers
# 定义生成器模型
def build_generator(latent_dim):
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(latent_dim,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256)
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 28, 28, 1)
return model
# 定义判别器模型
def build_discriminator():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same',
input_shape=[28, 28, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same'))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
# 定义损失函数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss + fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
# 定义优化器
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
# 定义训练过程
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, LATENT_DIM])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
# 训练模型
EPOCHS = 100
BATCH_SIZE = 128
LATENT_DIM = 100
generator = build_generator(LATENT_DIM)
discriminator = build_discriminator()
for epoch in range(EPOCHS):
for image_batch in train_dataset:
train_step(image_batch)
# 每 10 个 epoch 生成一张图像
if epoch % 10 == 0:
noise = tf.random.normal([1, LATENT_DIM])
generated_image = generator(noise, training=False)
plt.imshow(generated_image[0, :, :, 0], cmap='gray')
plt.show()
```
以上代码使用了TensorFlow框架,生成器模型和判别器模型都是基于卷积神经网络的,损失函数使用的是二元交叉熵。在训练过程中,每个epoch会遍历一次数据集,并使用优化器来更新生成器和判别器的参数。在训练过程中,也会周期性生成一些图像来检查生成器的效果。
如果想要使用GAN来扩充数据集,可以将生成器模型训练好后,使用它来生成一些新的图像,然后将这些图像加入原始数据集中进行训练。这样可以有效地扩充数据集,提高深度学习模型的性能。
阅读全文