请帮我写一段DCGAN代码

时间: 2023-08-31 19:43:51 浏览: 51
### 回答1: 这是一段使用DCGAN实现的简单代码:import torch import torch.nn as nn import torch.nn.functional as F# 定义生成器 class Generator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Generator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size*2) self.fc3 = nn.Linear(hidden_size*2, output_size) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.tanh(self.fc3(x)) return x # 定义判别器 class Discriminator(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(Discriminator, self).__init__() self.fc1 = nn.Linear(input_size, hidden_size) self.fc2 = nn.Linear(hidden_size, hidden_size*2) self.fc3 = nn.Linear(hidden_size*2, output_size) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.sigmoid(self.fc3(x)) return x ### 回答2: DCGAN,也就是深度卷积生成对抗网络,是一种用于生成图像的深度学习模型。下面是一个简单的DCGAN代码示例: 首先,我们导入需要的库: ``` import numpy as np import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers ``` 接下来,我们定义生成器模型: ``` def make_generator_model(): model = keras.Sequential() model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Reshape((7, 7, 256))) assert model.output_shape == (None, 7, 7, 256) model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) assert model.output_shape == (None, 7, 7, 128) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 14, 14, 64) model.add(layers.BatchNormalization()) model.add(layers.LeakyReLU()) model.add(layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 28, 28, 1) return model ``` 然后,我们定义判别器模型: ``` def make_discriminator_model(): model = keras.Sequential() model.add(layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(layers.LeakyReLU()) model.add(layers.Dropout(0.3)) model.add(layers.Flatten()) model.add(layers.Dense(1)) return model ``` 接下来,我们分别实例化生成器和判别器: ``` generator = make_generator_model() discriminator = make_discriminator_model() ``` 然后,我们定义损失函数和优化器: ``` cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True) def generator_loss(fake_output): return cross_entropy(tf.ones_like(fake_output), fake_output) def discriminator_loss(real_output, fake_output): real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss generator_optimizer = tf.keras.optimizers.Adam(1e-4) discriminator_optimizer = tf.keras.optimizers.Adam(1e-4) ``` 最后,我们定义训练过程: ``` @tf.function def train_step(images): noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables)) ``` 你可以根据需要调整训练批次大小(BATCH_SIZE)和训练循环的次数。希望以上简单的DCGAN代码示例对你有所帮助!

相关推荐

最新推荐

2001-2022年上市公司无形资产明细数据.xlsx

2001-2022年上市公司无形资产明细数据 1、时间:2001-2022年 2、来源:整理自wind 3、指标:公司代码、上市公司代码、A股股票代码、截止日期、合并标识、调整标识、科目名称、科目代码、期初余额元、期未余额元、原值 4、范围:上市公司 5、样本量:32.8W+

信息系统集成管理工程项目师必考重点内部资料.doc

信息系统集成管理工程项目师必考重点内部资料.doc

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

扎实基础工具:Maya在二维动画中的应用

# 1. Maya简介 ## 1.1 Maya软件概述 Maya是Autodesk公司推出的一款专业三维动画制作软件,被广泛应用于影视、游戏、动画等领域。它拥有强大的建模、动画、渲染等功能,是影视特效行业的主流软件之一。 ## 1.2 Maya在动画制作中的应用领域 Maya在动画制作中的应用非常广泛,可以用于制作影视特效、三维动画、角色动画、游戏动画等。其丰富的工具和功能使得动画制作更加高效和精确。 ## 1.3 Maya在二维动画制作中的优势 虽然Maya主打三维动画制作,但在二维动画制作中也有独特的优势。通过Maya的工具和功能,可以实现丰富多彩的二维动画效果,为动画制作带来

一个IP地址是用四个字节(每个字节8个位)的二进制码组成。请将32位二进制码表示的IP地址转换为十进制格式表示的IP地址输出。 输入格式: 输入在一行中给出32位二进制字符串。 输出格式: 在一行中输出十进制格式的IP地址,其由4个十进制数组成(分别对应4个8位的二进制数),中间用“.”分隔开。 输入样例: 11001100100101000001010101110010 输出样例: 204.148.21.114做题

好的,这是一个简单的二进制转十进制的问题。以下是一个C++代码示例,可以实现该功能: ```cpp #include <iostream> #include <bitset> // 二进制转十进制需要使用bitset库 using namespace std; int main() { string binary; cin >> binary; // 将二进制字符串转换为bitset类型 bitset<32> bits(binary); // 依次输出四个字节的十进制数 cout << bits.to_ulong() >> 24 << "

工程项目预算与管理讲义.doc

工程项目预算与管理讲义.doc

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

Flash动画制作教程:从入门到精通

# 1. Flash动画基础知识 ## 1.1 什么是Flash动画 Flash动画是一种基于矢量图形的动画制作技术,通过Adobe Flash软件创建,并以.swf格式输出的动画作品。Flash动画能够实现丰富的动画效果和交互体验,被广泛运用于网页动画、游戏开发、教育培训等领域。 ## 1.2 Flash动画的历史与发展 Flash动画起源于1996年,由FutureWave Software公司开发,后被Macromedia收购并发展成为Flash软件。随着互联网的发展,Flash动画在网页设计和互动媒体方面扮演了重要角色,但随着HTML5等技术的兴起,Flash动画逐渐退出历史舞台。

incompatible integer to pointer conversion assigning to 'struct kalman_filter_t *' from 'int' [-Werror,-Wint-conversion] filtered_gravity = Kalman_CreateFilter();

这个错误是因为你尝试将一个整数赋值给一个指向结构体 `kalman_filter_t` 的指针类型 `filtered_gravity`。解决方法是检查 `Kalman_CreateFilter()` 函数的返回类型是否为 `kalman_filter_t*`,如果不是,需要将其转换为正确的类型。另外,你可以尝试使用类型强制转换来解决这个问题,但是要确保转换的类型是正确的。例如,你可以将代码改为以下形式: ``` filtered_gravity = (kalman_filter_t*)Kalman_CreateFilter(); ``` 这样就可以将整数类型强制转换为指向 `kalman

常见的C语言面试编程题.doc

常见的C语言面试编程题