from machine import Pin,Timer,SPI import time hspi = SPI(1, 2500000, sck=Pin(14), mosi=Pin(13), miso=Pin(12), polarity=0) def byte2bin(b): bstr = bin(b)[2:] return '0'*(8-len(bstr)) + bstr def rgb2byte(r,g,b): str = byte2bin(g) + byte2bin(r) + byte2bin(b) spistr = ''.join([(lambda s: '011' if s*'0' else '001')(x) for x in str]) rgbdim = [int(spistr[i*8:i*8+8], 2) for i in range(9)] return bytes(rgbdim) rgbbyte = rgb2byte(0xff,0x80,0x3f) print(rgbbyte) rstbyte = bytes([0xff]*16) outbyte = rstbyte+rgbbyte while True: hspi.write(outbyte) time.sleep_ms(10) 解释下列代码

时间: 2024-03-07 14:53:04 浏览: 26
这段代码使用了MicroPython中的`machine`模块来进行SPI通信控制。具体来说,它使用了一个定时器(`Timer`)来定时发送数据,使用了一个SPI总线(`SPI`)来与外设进行通信,并使用了一个GPIO引脚(`Pin`)来作为SPI总线的时钟线(SCK)、数据输出线(MOSI)和数据输入线(MISO)。 在代码中,首先定义了一个`hspi`对象来初始化SPI总线的参数,然后定义了两个函数:`byte2bin`和`rgb2byte`。`byte2bin`函数将一个字节转换为8位二进制字符串,`rgb2byte`函数将RGB三个颜色通道的数值转换为需要传输的16个字节的数据,并返回一个`bytes`类型的对象。 接下来,代码定义了一个RGB颜色的值(红色、绿色和蓝色通道值)。这个RGB颜色值被传递给`rgb2byte`函数,该函数将其转换为需要传输的16个字节的数据,并将其存储在一个`bytes`类型的对象`rgbbyte`中。 在代码的下一部分,定义了一个重置字节(`rstbyte`)和输出字节(`outbyte`)。`rstbyte`是一个包含16个值为0xFF的字节的`bytes`类型的对象,`outbyte`是将`rstbyte`和`rgbbyte`连接而成的一个`bytes`类型的对象。 最后,在一个无限循环中,代码将`outbyte`写入SPI总线,并使用`time`模块的`sleep_ms`函数暂停10毫秒。这个循环会不断地重复这个过程,从而控制外设(例如LED灯)的颜色输出。
相关问题

from machine import Pin,Timer,SPI import time hspi = SPI(1, 2500000, sck=Pin(14), mosi=Pin(13), miso=Pin(12), polarity=0) def byte2bin(b): bstr = bin(b)[2:] return '0'(8-len(bstr)) + bstr def rgb2byte(r,g,b): str = byte2bin(g) + byte2bin(r) + byte2bin(b) spistr = ''.join([(lambda s: '011' if s'0' else '001')(x) for x in str]) rgbdim = [int(spistr[i8:i8+8], 2) for i in range(9)] return bytes(rgbdim) rgbbyte = rgb2byte(0xff,0x80,0x3f) print(rgbbyte) rstbyte = bytes([0xff]*16) outbyte = rstbyte+rgbbyte while True: hspi.write(outbyte) time.sleep_ms(10) 请将该代码用c语言重写

好的,以下是将MicroPython代码转换为C语言的示例程序: ``` #include <stdio.h> #include <stdlib.h> #include <stdint.h> #include <string.h> #include "driver/spi_master.h" #include "esp_system.h" #include "esp_log.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #define PIN_NUM_MISO 12 #define PIN_NUM_MOSI 13 #define PIN_NUM_CLK 14 #define PIN_NUM_CS 15 #define SPI_CLOCK_SPEED 2500000 spi_device_handle_t spi_handle; void byte2bin(uint8_t b, char* bin) { for (int i = 0; i < 8; i++) { bin[i] = (b & 0x80) ? '1' : '0'; b <<= 1; } bin[8] = '\0'; } void rgb2byte(uint8_t r, uint8_t g, uint8_t b, uint8_t* rgbdim) { char bin[9]; byte2bin(g, bin); memcpy(bin + 8, bin, 8); byte2bin(r, bin + 8); memcpy(bin + 16, bin, 8); byte2bin(b, bin + 24); memcpy(bin + 24, bin, 8); char* spistr = (char*)malloc(25); for (int i = 0; i < 9; i++) { spistr[i * 3] = (bin[i] == '0') ? '0' : '1'; spistr[i * 3 + 1] = '1'; spistr[i * 3 + 2] = (bin[i] == '0') ? '1' : '0'; } for (int i = 0; i < 9; i++) { rgbdim[i] = strtol(spistr + i * 8, NULL, 2); } free(spistr); } void app_main() { esp_err_t ret; spi_bus_config_t buscfg = { .miso_io_num = PIN_NUM_MISO, .mosi_io_num = PIN_NUM_MOSI, .sclk_io_num = PIN_NUM_CLK, .quadwp_io_num = -1, .quadhd_io_num = -1, .max_transfer_sz = 0, }; spi_device_interface_config_t devcfg = { .clock_speed_hz = SPI_CLOCK_SPEED, .mode = 0, .spics_io_num = PIN_NUM_CS, .queue_size = 1, .flags = SPI_DEVICE_NO_DUMMY, }; ret = spi_bus_initialize(HSPI_HOST, &buscfg, 1); ESP_ERROR_CHECK(ret); ret = spi_bus_add_device(HSPI_HOST, &devcfg, &spi_handle); ESP_ERROR_CHECK(ret); uint8_t rgbbyte[9]; rgb2byte(0xff, 0x80, 0x3f, rgbbyte); uint8_t rstbyte[16]; memset(rstbyte, 0xff, 16); uint8_t outbyte[25]; memcpy(outbyte, rstbyte, 16); memcpy(outbyte + 16, rgbbyte, 9); while (1) { spi_transaction_t t; memset(&t, 0, sizeof(t)); t.length = 25 * 8; t.tx_buffer = outbyte; ret = spi_device_polling_transmit(spi_handle, &t); ESP_ERROR_CHECK(ret); vTaskDelay(10 / portTICK_PERIOD_MS); } } ``` 上面的C语言代码使用了ESP-IDF的SPI库来控制SPI总线,并且使用了FreeRTOS的任务调度器来进行延时操作。在转换过程中,需要将MicroPython的函数转换为C语言的函数,并且使用ESP-IDF提供的API来实现SPI通信。与MicroPython不同,C语言需要手动分配和释放内存,因此在代码中需要使用malloc和free函数来进行内存管理。

请用c语言重写这段代码from machine import Pin,Timer,SPI import time hspi = SPI(1, 2500000, sck=Pin(14), mosi=Pin(13), miso=Pin(12), polarity=0) def byte2bin(b): bstr = bin(b)[2:] return '0'(8-len(bstr)) + bstr def rgb2byte(r,g,b): str = byte2bin(g) + byte2bin(r) + byte2bin(b) spistr = ''.join([(lambda s: '011' if s'0' else '001')(x) for x in str]) rgbdim = [int(spistr[i8:i8+8], 2) for i in range(9)] return bytes(rgbdim) rgbbyte = rgb2byte(0xff,0x80,0x3f) print(rgbbyte) rstbyte = bytes([0xff]*16) outbyte = rstbyte+rgbbyte while True: hspi.write(outbyte) time.sleep_ms(10)

#include <stdio.h> #include <stdlib.h> #include "pico/stdlib.h" #include "hardware/spi.h" #include "hardware/gpio.h" #define SCK_PIN 14 #define MOSI_PIN 13 #define MISO_PIN 12 void byte2bin(uint8_t b, char* result) { char* bstr = itoa(b, result, 2); int len = strlen(bstr); for (int i = 0; i < 8 - len; i++) { result[i] = '0'; } result[8 - len] = '\0'; } void rgb2byte(uint8_t r, uint8_t g, uint8_t b, uint8_t* rgbdim) { char str[25]; char spistr[25]; char result[9]; byte2bin(g, result); strcpy(str, result); byte2bin(r, result); strcat(str, result); byte2bin(b, result); strcat(str, result); for (int i = 0; i < 24; i++) { spistr[i] = (str[i] == '0') ? '0' : '1'; } spistr[24] = '\0'; for (int i = 0; i < 9; i++) { rgbdim[i] = strtol(spistr + i * 8, NULL, 2); } } int main() { stdio_init_all(); spi_init(spi1, 2500000); gpio_set_function(SCK_PIN, GPIO_FUNC_SPI); gpio_set_function(MOSI_PIN, GPIO_FUNC_SPI); gpio_set_function(MISO_PIN, GPIO_FUNC_SPI); uint8_t rgbbyte[9]; rgb2byte(0xff, 0x80, 0x3f, rgbbyte); uint8_t rstbyte[16]; memset(rstbyte, 0xff, sizeof(rstbyte)); uint8_t outbyte[25]; memcpy(outbyte, rstbyte, sizeof(rstbyte)); memcpy(outbyte + sizeof(rstbyte), rgbbyte, sizeof(rgbbyte)); while (true) { spi_write_blocking(spi1, outbyte, sizeof(outbyte)); sleep_ms(10); } return 0; }

相关推荐

from pyb import Pin, Timer inverse_left=False #change it to True to inverse left wheel inverse_right=False #change it to True to inverse right wheel ain1 = Pin('P0', Pin.OUT_PP) ain2 = Pin('P1', Pin.OUT_PP) bin1 = Pin('P2', Pin.OUT_PP) bin2 = Pin('P3', Pin.OUT_PP) ain1.low() ain2.low() bin1.low() bin2.low() pwma = Pin('P7') pwmb = Pin('P8') tim = Timer(4, freq=1000) ch1 = tim.channel(1, Timer.PWM, pin=pwma) ch2 = tim.channel(2, Timer.PWM, pin=pwmb) ch1.pulse_width_percent(0) ch2.pulse_width_percent(0) def run(left_speed, right_speed): if inverse_left==True: left_speed=(-left_speed) if inverse_right==True: right_speed=(-right_speed) if left_speed < 0: ain1.low() ain2.high() else: ain1.high() ain2.low() ch1.pulse_width_percent(int(abs(left_speed))) if right_speed < 0: bin1.low() bin2.high() from pyb import Pin, Timer inverse_left=False #change it to True to inverse left wheel inverse_right=False #change it to True to inverse right wheel ain1 = Pin('P0', Pin.OUT_PP) ain2 = Pin('P1', Pin.OUT_PP) bin1 = Pin('P2', Pin.OUT_PP) bin2 = Pin('P3', Pin.OUT_PP) ain1.low() ain2.low() bin1.low() bin2.low() pwma = Pin('P7') pwmb = Pin('P8') tim = Timer(4, freq=1000) ch1 = tim.channel(1, Timer.PWM, pin=pwma) ch2 = tim.channel(2, Timer.PWM, pin=pwmb) ch1.pulse_width_percent(0) ch2.pulse_width_percent(0) def run(left_speed, right_speed): if inverse_left==True: left_speed=(-left_speed) if inverse_right==True: right_speed=(-right_speed) if left_speed < 0: ain1.low() ain2.high() else: ain1.high() ain2.low() ch1.pulse_width_percent(int(abs(left_speed))) if right_speed < 0: bin1.low() bin2.high() else: bin1.high() bin2.low() ch2.pulse_width_percent(int(abs(right_speed))) 帮我分析这段代码

最新推荐

recommend-type

C++定时器Timer在项目中的使用方法

C++定时器Timer在项目中的使用方法 C++定时器Timer在项目中的使用方法是指在项目中使用C++语言实现定时器的使用方法。定时器是计算机编程中的一种机制,用于在特定的时间间隔内执行特定的任务。本文将详细介绍C++...
recommend-type

C#中Timer使用及解决重入问题

在C#编程中,`Timer`是一个非常常用的组件,它允许开发者在指定的时间间隔内触发一个事件。在本文中,我们将深入探讨`System.Timers.Timer`的使用以及如何解决可能出现的重入问题。 首先,`System.Timers.Timer`是...
recommend-type

详解Python 多线程 Timer定时器/延迟执行、Event事件

Python中的多线程是并发处理任务的重要工具,而`Timer`和`Event`则是Python标准库`threading`模块中的两个关键组件,用于控制线程的执行时机和交互。 `Timer`类是`Thread`的子类,它提供了一种定时执行任务的功能。...
recommend-type

详解C#中的System.Timers.Timer定时器的使用和定时自动清理内存应用

C#中的System.Timers.Timer定时器使用和定时自动清理内存应用 C#中的System.Timers.Timer定时器是一种常用的定时器组件,用于在指定时间间隔内触发事件。该组件广泛应用于各种场景,如定时更新数据、定时清理内存、...
recommend-type

美国地图json文件,可以使用arcgis转为spacefile

美国地图json文件,可以使用arcgis转为spacefile
recommend-type

基于Springboot的医院信管系统

"基于Springboot的医院信管系统是一个利用现代信息技术和网络技术改进医院信息管理的创新项目。在信息化时代,传统的管理方式已经难以满足高效和便捷的需求,医院信管系统的出现正是适应了这一趋势。系统采用Java语言和B/S架构,即浏览器/服务器模式,结合MySQL作为后端数据库,旨在提升医院信息管理的效率。 项目开发过程遵循了标准的软件开发流程,包括市场调研以了解需求,需求分析以明确系统功能,概要设计和详细设计阶段用于规划系统架构和模块设计,编码则是将设计转化为实际的代码实现。系统的核心功能模块包括首页展示、个人中心、用户管理、医生管理、科室管理、挂号管理、取消挂号管理、问诊记录管理、病房管理、药房管理和管理员管理等,涵盖了医院运营的各个环节。 医院信管系统的优势主要体现在:快速的信息检索,通过输入相关信息能迅速获取结果;大量信息存储且保证安全,相较于纸质文件,系统节省空间和人力资源;此外,其在线特性使得信息更新和共享更为便捷。开发这个系统对于医院来说,不仅提高了管理效率,还降低了成本,符合现代社会对数字化转型的需求。 本文详细阐述了医院信管系统的发展背景、技术选择和开发流程,以及关键组件如Java语言和MySQL数据库的应用。最后,通过功能测试、单元测试和性能测试验证了系统的有效性,结果显示系统功能完整,性能稳定。这个基于Springboot的医院信管系统是一个实用且先进的解决方案,为医院的信息管理带来了显著的提升。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具

![字符串转Float性能调优:优化Python字符串转Float性能的技巧和工具](https://pic1.zhimg.com/80/v2-3fea10875a3656144a598a13c97bb84c_1440w.webp) # 1. 字符串转 Float 性能调优概述 字符串转 Float 是一个常见的操作,在数据处理和科学计算中经常遇到。然而,对于大规模数据集或性能要求较高的应用,字符串转 Float 的效率至关重要。本章概述了字符串转 Float 性能调优的必要性,并介绍了优化方法的分类。 ### 1.1 性能调优的必要性 字符串转 Float 的性能问题主要体现在以下方面
recommend-type

Error: Cannot find module 'gulp-uglify

当你遇到 "Error: Cannot find module 'gulp-uglify'" 这个错误时,它通常意味着Node.js在尝试运行一个依赖了 `gulp-uglify` 模块的Gulp任务时,找不到这个模块。`gulp-uglify` 是一个Gulp插件,用于压缩JavaScript代码以减少文件大小。 解决这个问题的步骤一般包括: 1. **检查安装**:确保你已经全局安装了Gulp(`npm install -g gulp`),然后在你的项目目录下安装 `gulp-uglify`(`npm install --save-dev gulp-uglify`)。 2. **配置
recommend-type

基于Springboot的冬奥会科普平台

"冬奥会科普平台的开发旨在利用现代信息技术,如Java编程语言和MySQL数据库,构建一个高效、安全的信息管理系统,以改善传统科普方式的不足。该平台采用B/S架构,提供包括首页、个人中心、用户管理、项目类型管理、项目管理、视频管理、论坛和系统管理等功能,以提升冬奥会科普的检索速度、信息存储能力和安全性。通过需求分析、设计、编码和测试等步骤,确保了平台的稳定性和功能性。" 在这个基于Springboot的冬奥会科普平台项目中,我们关注以下几个关键知识点: 1. **Springboot框架**: Springboot是Java开发中流行的应用框架,它简化了创建独立的、生产级别的基于Spring的应用程序。Springboot的特点在于其自动配置和起步依赖,使得开发者能快速搭建应用程序,并减少常规配置工作。 2. **B/S架构**: 浏览器/服务器模式(B/S)是一种客户端-服务器架构,用户通过浏览器访问服务器端的应用程序,降低了客户端的维护成本,提高了系统的可访问性。 3. **Java编程语言**: Java是这个项目的主要开发语言,具有跨平台性、面向对象、健壮性等特点,适合开发大型、分布式系统。 4. **MySQL数据库**: MySQL是一个开源的关系型数据库管理系统,因其高效、稳定和易于使用而广泛应用于Web应用程序,为平台提供数据存储和查询服务。 5. **需求分析**: 开发前的市场调研和需求分析是项目成功的关键,它帮助确定平台的功能需求,如用户管理、项目管理等,以便满足不同用户群体的需求。 6. **数据库设计**: 数据库设计包括概念设计、逻辑设计和物理设计,涉及表结构、字段定义、索引设计等,以支持平台的高效数据操作。 7. **模块化设计**: 平台功能模块化有助于代码组织和复用,包括首页模块、个人中心模块、管理系统模块等,每个模块负责特定的功能。 8. **软件开发流程**: 遵循传统的软件生命周期模型,包括市场调研、需求分析、概要设计、详细设计、编码、测试和维护,确保项目的质量和可维护性。 9. **功能测试、单元测试和性能测试**: 在开发过程中,通过这些测试确保平台功能的正确性、模块的独立性和系统的性能,以达到预期的用户体验。 10. **微信小程序、安卓源码**: 虽然主要描述中没有详细说明,但考虑到标签包含这些内容,可能平台还提供了移动端支持,如微信小程序和安卓应用,以便用户通过移动设备访问和交互。 这个基于Springboot的冬奥会科普平台项目结合了现代信息技术和软件工程的最佳实践,旨在通过信息化手段提高科普效率,为用户提供便捷、高效的科普信息管理服务。