cv2.circle(img, (int(point['x']), int(point['y'])), 2, (0, 255, 255), -1)什么意思

时间: 2024-01-28 11:03:49 浏览: 24
这是使用OpenCV库在图像上绘制一个圆形的函数。具体来说,它的参数解释如下: - img:要绘制圆形的图像。 - (int(point['x']), int(point['y'])):圆心的坐标,这里使用了字典类型的point变量来表示坐标,将其x和y值强制转换为整数类型。 - 2:圆的半径。 - (0, 255, 255):圆的颜色,这里是黄色,用(R,G,B)的形式表示。 - -1:表示圆形内部的填充方式,-1为实心圆,0或正整数为空心圆。
相关问题

import cv2 import numpy as np img = cv2.imread('2.jpg') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=5, maxRadius=300) circle = circles[0][0] center = (int(circle[0]), int(circle[1])) radius = int(circle[2]) angle = np.pi / 4 # 45度 point_on_circle = (int(center[0] + radius * np.cos(angle)), int(center[1] + radius * np.sin(angle))) print('圆心坐标:',center) print('圆上一点坐标',int(center[0] + radius * np.cos(angle)) ,int(center[1] + radius * np.sin(angle))) cv2.circle(img, center, radius, (0, 255, 0), 2) cv2.circle(img, center, 2, (0, 0, 255), 3) cv2.circle(img, point_on_circle, 2, (0, 0, 255), 3) cv2.imshow('image', img) cv2.waitKey(0) cv2.destroyAllWindows()请修改上述代码。可以在qt界面中显示

您可以使用以下代码将上述代码转换为在Qt界面中显示的代码: ```python import cv2 import numpy as np from PyQt5.QtGui import QImage, QPixmap from PyQt5.QtWidgets import QApplication, QLabel, QWidget, QVBoxLayout class MainWindow(QWidget): def __init__(self): super().__init__() # 读取图像 img = cv2.imread('2.jpg') # 转换为灰度图 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 检测圆 circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=5, maxRadius=300) # 取第一个圆 circle = circles[0][0] # 获取圆心坐标、半径 center = (int(circle[0]), int(circle[1])) radius = int(circle[2]) # 计算圆上一点坐标 angle = np.pi / 4 # 45度 point_on_circle = (int(center[0] + radius * np.cos(angle)), int(center[1] + radius * np.sin(angle))) # 在图像中绘制圆和点 cv2.circle(img, center, radius, (0, 255, 0), 2) cv2.circle(img, center, 2, (0, 0, 255), 3) cv2.circle(img, point_on_circle, 2, (0, 0, 255), 3) # 将图像转换为QImage img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) h, w, ch = img_rgb.shape bytes_per_line = ch * w qimg = QImage(img_rgb.data, w, h, bytes_per_line, QImage.Format_RGB888) # 在Qt界面中显示图像 label = QLabel(self) pixmap = QPixmap.fromImage(qimg) label.setPixmap(pixmap) # 设置窗口布局 layout = QVBoxLayout() layout.addWidget(label) self.setLayout(layout) if __name__ == '__main__': app = QApplication([]) window = MainWindow() window.show() app.exec_() ``` 这段代码使用了PyQt5库来创建一个Qt界面,并在其中显示图像。您需要安装PyQt5库才能运行此代码。

import cv2 import math def cal_ang(start, center, end): point_1 = start point_2 = center point_3 = end a = math.sqrt( (point_2[0] - point_3[0]) * (point_2[0] - point_3[0]) + (point_2[1] - point_3[1]) * (point_2[1] - point_3[1])) b = math.sqrt( (point_1[0] - point_3[0]) * (point_1[0] - point_3[0]) + (point_1[1] - point_3[1]) * (point_1[1] - point_3[1])) c = math.sqrt( (point_1[0] - point_2[0]) * (point_1[0] - point_2[0]) + (point_1[1] - point_2[1]) * (point_1[1] - point_2[1])) A = math.degrees(math.acos((a * a - b * b - c * c) / (-2 * b * c))) B = math.degrees(math.acos((b * b - a * a - c * c) / (-2 * a * c))) C = math.degrees(math.acos((c * c - a * a - b * b) / (-2 * a * b))) return B img = cv2.imread('46.png') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(gray, 70, 255, cv2.THRESH_BINARY) contours,hierarchy=cv2.findContours(thresh,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) hull = cv2.convexHull(contours[0],returnPoints=False) defects = cv2.convexityDefects(contours[0],hull) start = end = (0,0) for i in range(0,defects.shape[0]): s,e,f,d = defects[i,0] start = tuple(contours[0][s][0]) end = tuple(contours[0][e][0]) far = tuple(contours[0][f][0]) if d > 5000: cv2.line(img,start,end,[0,255,0],2) cv2.circle(img,end,5,[0,0,255],-1) cv2.circle(img,start,5,[0,0,255],-1) break cv2.imshow('find', img) center,radius = cv2.minEnclosingCircle(contours[0]) cv2.circle(img,(int(center[0]),int(center[1])),8,(255,0,255),-1) cv2.circle(img,end,8,[255,0,0],-1) cv2.circle(img,start,8,[255,0,0],-1) cv2.line(img,start,(int(center[0]),int(center[1])),[0,0,255],2) cv2.line(img,end,(int(center[0]),int(center[1])),[0,0,255],2) angle = cal_ang(start,center,end) print('angle = %0.2f' % angle) length = (1 - angle / 360.0) * math.pi * radius * 2 print((angle / 360.0)) print('radius = %0.2f' % radius) strL = 'length=%0.2f' % length cv2.putText(img,strL,(int(center[0]-40),int(center[1]+40)),0,0.8,(0,255,0),2) cv2.imshow('result', img) angle_1 = cal_ang(start, center, ((center[0]+100),(center[1]))) angle_2 = cal_ang(end, center, ((center[0]+100),(center[1]))) cv2.ellipse(img,(int(center[0]),int(center[1])),(int(radius),int(radius)),0,-angle_1,0,(255,0,255),2, cv2.LINE_AA) cv2.ellipse(img,(int(center[0]),int(center[1])),(int(radius),int(radius)),0,0,angle_2,(255,0,255),2,cv2.LINE_AA) cv2.imshow('result', img) cv2.imwrite('result.png',img) cv2.waitKey(0) cv2.destroyAllWindows(),将这段代码转换为c++

以下是将Python代码转换为C++的结果。注意,由于数据类型和库函数的区别,代码可能需要进行微调才能正常运行。 ```c++ #include <iostream> #include <opencv2/opencv.hpp> #include <math.h> using namespace std; using namespace cv; double cal_ang(Point start, Point center, Point end) { Point2f point_1 = start; Point2f point_2 = center; Point2f point_3 = end; double a = sqrt(pow(point_2.x - point_3.x, 2) + pow(point_2.y - point_3.y, 2)); double b = sqrt(pow(point_1.x - point_3.x, 2) + pow(point_1.y - point_3.y, 2)); double c = sqrt(pow(point_1.x - point_2.x, 2) + pow(point_1.y - point_2.y, 2)); double A = acos((a * a - b * b - c * c) / (-2 * b * c)) * 180 / CV_PI; double B = acos((b * b - a * a - c * c) / (-2 * a * c)) * 180 / CV_PI; double C = acos((c * c - a * a - b * b) / (-2 * a * b)) * 180 / CV_PI; return B; } int main() { Mat img = imread("46.png"); Mat gray; cvtColor(img, gray, COLOR_BGR2GRAY); threshold(gray, gray, 70, 255, THRESH_BINARY); vector<vector<Point>> contours; vector<Vec4i> hierarchy; findContours(gray, contours, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_NONE); vector<vector<Point>> hull(contours.size()); vector<vector<int>> hullsI(contours.size()); vector<vector<Vec4i>> defects(contours.size()); convexHull(contours[0], hull[0], false); convexHull(contours[0], hullsI[0], false); if (hullsI[0].size() > 0) { Point2f* pts = new Point2f[hullsI[0].size()]; for (size_t i = 0; i < hullsI[0].size(); i++) { pts[i] = contours[0][hullsI[0][i]]; } int n = hullsI[0].size(); convexityDefects(pts, n, hullsI[0], defects[0]); delete[] pts; } Point start, end; for (int i = 0; i < defects[0].size(); i++) { Vec4i& v = defects[0][i]; int startidx = v[0]; Point ptStart(contours[0][startidx]); int endidx = v[1]; Point ptEnd(contours[0][endidx]); int faridx = v[2]; Point ptFar(contours[0][faridx]); if (v[3] > 5000) { line(img, ptStart, ptEnd, Scalar(0, 255, 0), 2); circle(img, ptEnd, 5, Scalar(0, 0, 255), -1); circle(img, ptStart, 5, Scalar(0, 0, 255), -1); start = ptStart; end = ptEnd; break; } } Point2f center; float radius = 0; minEnclosingCircle(contours[0], center, radius); circle(img, center, 8, Scalar(255, 0, 255), -1); circle(img, end, 8, Scalar(255, 0, 0), -1); circle(img, start, 8, Scalar(255, 0, 0), -1); line(img, start, Point(center), Scalar(0, 0, 255), 2); line(img, end, Point(center), Scalar(0, 0, 255), 2); double angle = cal_ang(start, center, end); cout << "angle = " << angle << endl; double length = (1 - angle / 360.0) * CV_PI * radius * 2; cout << angle / 360.0 << endl; cout << "radius = " << radius << endl; stringstream ss; ss << "length=" << fixed << setprecision(2) << length; String strL = ss.str(); putText(img, strL, Point(center.x - 40, center.y + 40), 0, 0.8, Scalar(0, 255, 0), 2); double angle_1 = cal_ang(start, center, Point(center.x + 100, center.y)); double angle_2 = cal_ang(end, center, Point(center.x + 100, center.y)); ellipse(img, center, Size(radius, radius), 0, -angle_1, 0, Scalar(255, 0, 255), 2, LINE_AA); ellipse(img, center, Size(radius, radius), 0, 0, angle_2, Scalar(255, 0, 255), 2, LINE_AA); imshow("result", img); imwrite("result.png", img); waitKey(0); destroyAllWindows(); return 0; } ```

相关推荐

将以下python代码转化为c++版本。import math import cv2 import numpy as np import os thre1=10 thre2=-10 r=60 ang =0 def select_point(image,ang): #根据遥杆方向确定跟踪点坐标 sinA=math.sin(ang) cosA=math.cos(ang) dirBaseX=int(cosA1000) disBaseY=int(-sinA1000) dirValMax=-1000000000 for i in range(len(image)): for j in range(len(image[0])): if image[i][j]==255: dirVal=idisBaseY+jdirBaseX if dirVal>dirValMax: rstRow=i rstCol=j dirValMax=dirVal return [rstCol,rstRow] sequence_path = "./images/" save_path="./out/" for file in os.listdir(sequence_path): filename=os.path.join(sequence_path, file) image=cv2.imread(filename, 0) image=cv2.blur(image,(3,3)) img=np.zeros((len(image), len(image[0])),np.uint8) for i in range(r,len(image)-r): for j in range(r,len(image[0])-r): shizi_1=( int(image[i][j])-int(image[i-r][j])>thre1 and int(image[i][j])-int(image[i][j-r])>thre1 and (int(image[i][j])-int(image[i+r][j])>thre1) and int(image[i][j])-int(image[i][j+r])>thre1 ) xieshizi_1=( int(image[i][j])-int(image[i-r][j-r])<thre2 and int(image[i][j])-int(image[i+r][j-r])<thre2 and int(image[i][j])-int(image[i-r][j+r])<thre2 and int(image[i][j])-int(image[i+r][j+r])<thre2 ) if (shizi_1 or xieshizi_1): img[i][j]=255 else: img[i][j] =0 retval, labels, stats, centroids = cv2.connectedComponentsWithStats(img, connectivity=8) maxVal = 0 index = 0 for i in range(1, len(stats)): if stats[i][4] > maxVal: maxVal = stats[i][4] index = i #x,y,h,w s for i in range(len(labels)): for j in range(len(labels[0])): if labels[i][j]==index: labels[i][j]=255 else: labels[i][j] = 0 img2=np.array(labels) target_x,target_y=select_point(img2,ang) print("跟踪点坐标:{}".format((target_x,target_y))) cv2.imwrite(os.path.join(save_path, file), cv2.circle(image,(int(target_x),int(target_y)),5,(255,255,0),2))

最新推荐

recommend-type

C++实现的俄罗斯方块游戏

一个简单的俄罗斯方块游戏的C++实现,涉及基本的游戏逻辑和控制。这个示例包括了初始化、显示、移动、旋转和消除方块等基本功能。 主要文件 main.cpp:包含主函数和游戏循环。 tetris.h:包含游戏逻辑的头文件。 tetris.cpp:包含游戏逻辑的实现文件。 运行说明 确保安装SFML库,以便进行窗口绘制和用户输入处理。
recommend-type

06二十四节气之谷雨模板.pptx

06二十四节气之谷雨模板.pptx
recommend-type

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip

基于Web开发的聊天系统(模拟QQ的基本功能)源码+项目说明.zip 本项目是一个仿QQ基本功能的前后端分离项目。前端采用了vue.js技术栈,后端采用springboot+netty混合开发。实现了好友申请、好友分组、好友聊天、群管理、群公告、用户群聊等功能。 后端技术栈 1. Spring Boot 2. netty nio 3. WebSocket 4. MyBatis 5. Spring Data JPA 6. Redis 7. MySQL 8. Spring Session 9. Alibaba Druid 10. Gradle #### 前端技术栈 1. Vue 3. axios 4. vue-router 5. Vuex 6. WebSocket 7. vue-cli4 8. JavaScript ES6 9. npm 【说明】 【1】项目代码完整且功能都验证ok,确保稳定可靠运行后才上传。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通,帮助解答。 【2】项目主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S