temp = temp.transpose() # 打乱顺序 np.random.shuffle(temp) # print(temp) # 取出第一个元素作为 image 第二个元素作为 label image_list = temp[:, 0] label1_train = temp[:train_num, 1] # print(label1_train) # 单出,去掉单字符 label_train = [int(y) for y in label1_train] # print(label_train) label1_test = temp[train_num:, 1] label_test = [int(y) for y in label1_test]
时间: 2024-04-04 16:29:39 浏览: 60
这段代码是对加载的数据进行一些处理,包括打乱顺序、划分训练集和测试集,并将标签数据转换为 int 类型。首先,使用 temp.transpose() 函数将 temp 数组转置,然后使用 np.random.shuffle(temp) 函数将 temp 数组打乱顺序,以增加数据的随机性。接着,使用 temp[:, 0] 取出 temp 数组中的第一列作为图片路径,使用 temp[:train_num, 1] 取出前 train_num 行第二列作为训练集的标签,使用 temp[train_num:, 1] 取出后面的为测试集的标签。然后,使用列表推导式将标签数据转换为 int 类型,并分别将训练集和测试集的标签存储到 label_train 和 label_test 中。需要注意的是,该函数并没有对图片进行读取和预处理的操作,只是简单地将图片路径和标签存储到了列表中,并将标签转换为了 int 类型。
相关问题
import os import cv2 import numpy as np def load_data(file_dir): all_num = 4000 train_num = int(all_num * 0.75) cats = [] label_cats = [] dogs = [] label_dogs = [] for file in os.listdir(file_dir): file="\\"+file name = file.split(sep='.') if 'cat' in name[0]: cats.append(file_dir + file) label_cats.append(0) else: if 'dog' in name[0]: dogs.append(file_dir + file) label_dogs.append(1) image_list = np.hstack((cats,dogs)) label_list = np.hstack((label_cats, label_dogs)) temp = np.array([image_list, label_list]) # 矩阵转置 temp = temp.transpose() # 打乱顺序 np.random.shuffle(temp) # print(temp) # 取出第一个元素作为 image 第二个元素作为 label image_list = temp[:, 0] label1_train = temp[:train_num, 1] # print(label1_train) # 单出,去掉单字符 label_train = [int(y) for y in label1_train] # print(label_train) label1_test = temp[train_num:, 1] label_test = [int(y) for y in label1_test] data_test=[] data_train = [] for i in range (all_num): if i <train_num: image= image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #将图片转换成RGB格式 image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image)/255#归一化[0,1] image=image.reshape(-1,28,28) data_train.append(image) # label_train.append(label_list[i]) else: image = image_list[i] image = cv2.imread(image) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) image = cv2.resize(image, (28, 28)) image = image.astype('float32') image = np.array(image) / 255 image = image.reshape(-1, 28, 28) data_test.append(image) # label_test.append(label_list[i]) data_train=np.array(data_train) label_train = np.array(label_train) data_test = np.array(data_test) label_test = np.array(label_test) return data_train,label_train,data_test, label_test
这段代码是定义了一个函数load_data,用来加载数据集,并将数据集划分为训练集和测试集。函数接收一个参数file_dir,表示数据集所在的路径。首先,定义了all_num和train_num两个变量,用来表示数据集的总数和训练集的数量,其中训练集的数量是总数的75%。然后,定义了四个空列表,分别用来存储猫的图片路径、猫的标签、狗的图片路径和狗的标签。接着,使用os.listdir函数遍历数据集路径下的所有文件,对每个文件进行判断,如果文件名中包含'cat'字符串,则将该文件的路径添加到cats列表中,并将标签0添加到label_cats列表中;如果文件名中包含'dog'字符串,则将该文件的路径添加到dogs列表中,并将标签1添加到label_dogs列表中。然后,使用numpy.hstack函数将猫和狗的图片路径和标签拼接成两个一维数组image_list和label_list。接着,使用numpy.array函数将image_list和label_list拼接成一个二维数组temp,并将其转置,使得图片路径和标签分别位于temp的第一列和第二列。然后,使用numpy.random.shuffle函数对temp进行打乱顺序操作。接着,将temp的第一列(即图片路径)赋值给image_list,将temp的前train_num行的第二列(即标签)赋值给label1_train,将temp的后面部分的第二列(即标签)赋值给label1_test。然后,将label1_train和label1_test从字符串类型转换为整型,并分别赋值给label_train和label_test。最后,调用前面提到的数据预处理代码,将image_list中的每张图片进行预处理,并将处理后的图片数据分别添加到data_train和data_test列表中,并将列表转换为numpy数组类型。最后,函数返回data_train、label_train、data_test和label_test四个变量。
img = Image.open('C:\yingxiang\DJI_20230322140516_0026_V.JPG') # 获取 EXIF 数据 exif_data = img._getexif() # 获取方位元素信息 orientation = exif_data.get(274) # 方向信息标签为274 if orientation == 1: # 没有方向信息 pass elif orientation == 2: img = img.transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 3: img = img.rotate(180) elif orientation == 4: img = img.rotate(180).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 5: img = img.rotate(-90).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 6: img = img.rotate(-90) elif orientation == 7: img = img.rotate(90).transpose(Image.FLIP_LEFT_RIGHT) elif orientation == 8: img = img.rotate(90) # 获取航向角、俯仰角和滚转角 roll = exif_data.get(204) / 100.0 # 滚转角标签为204,单位为1/100度 pitch = exif_data.get(206) / 100.0 # 俯仰角标签为206,单位为1/100度 yaw = exif_data.get(208) / 100.0 # 航向角标签为208,单位为1/100度 print(roll,pitch,yaw)这段代码怎么改可以确保变量不为空,再进行除法运算
你可以使用异常处理来确保变量不为空,再进行除法运算。例如,你可以使用try-except语句来捕获可能引发ZeroDivisionError或TypeError异常的情况,并在出现异常时进行处理。具体代码如下所示:
```
img = Image.open('C:\yingxiang\DJI_20230322140516_0026_V.JPG')
# 获取 EXIF 数据
exif_data = img._getexif()
# 获取方位元素信息
orientation = exif_data.get(274)
# 方向信息标签为274
if orientation == 1:
# 没有方向信息
pass
elif orientation == 2:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
elif orientation == 3:
img = img.rotate(180)
elif orientation == 4:
img = img.rotate(180).transpose(Image.FLIP_LEFT_RIGHT)
elif orientation == 5:
img = img.rotate(-90).transpose(Image.FLIP_LEFT_RIGHT)
elif orientation == 6:
img = img.rotate(-90)
elif orientation == 7:
img = img.rotate(90).transpose(Image.FLIP_LEFT_RIGHT)
elif orientation == 8:
img = img.rotate(90)
# 获取航向角、俯仰角和滚转角
try:
roll = exif_data.get(204) / 100.0 # 滚转角标签为204,单位为1/100度
pitch = exif_data.get(206) / 100.0 # 俯仰角标签为206,单位为1/100度
yaw = exif_data.get(208) / 100.0 # 航向角标签为208,单位为1/100度
except (ZeroDivisionError, TypeError):
print("发生除零或类型错误异常,无法计算角度值。")
roll, pitch, yaw = None, None, None
print(roll, pitch, yaw)
```
在这个代码中,我们使用try-except语句来捕获可能引发ZeroDivisionError或TypeError异常的情况。如果出现异常,我们会在控制台上打印一条错误消息,并将变量roll、pitch、yaw设置为None。这样可以确保变量不为空,避免了除以0或类型错误的情况。
阅读全文