python OpenCV根据畸变半径进行桶形矫正给出示例代码
时间: 2023-09-04 21:09:35 浏览: 96
下面是一个简单的Python示例代码,根据畸变半径进行桶形矫正:
```python
import cv2
import numpy as np
# 读取图像
img = cv2.imread('example.jpg')
# 计算畸变半径
h, w = img.shape[:2]
distCoeff = np.zeros((4,1))
k1 = -0.5
k2 = 0.25
p1 = 0.0
p2 = 0.0
distCoeff[0,0] = k1
distCoeff[1,0] = k2
distCoeff[2,0] = p1
distCoeff[3,0] = p2
focal_length = w
center = (w/2, h/2)
camera_matrix = np.array([[focal_length, 0, center[0]],
[0, focal_length, center[1]],
[0, 0, 1]], dtype = "double")
new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, distCoeff, (w,h), 1, (w,h))
# 进行桶形矫正
mapx, mapy = cv2.initUndistortRectifyMap(camera_matrix, distCoeff, None, new_camera_matrix, (w,h), 5)
dst = cv2.remap(img, mapx, mapy, cv2.INTER_LINEAR)
# 显示原图和矫正后的图像
cv2.imshow('Original', img)
cv2.imshow('Corrected', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
在这个示例代码中,我们首先读取了一张图像,然后使用OpenCV中的`cv2.getOptimalNewCameraMatrix`函数计算出新的相机矩阵和ROI区域。接下来,我们使用`cv2.initUndistortRectifyMap`函数计算出畸变矫正的映射表,然后使用`cv2.remap`函数将原始图像映射到畸变矫正后的图像。最后,我们显示原始图像和矫正后的图像。
阅读全文