L(2)=Link([0 0 a2 pi/2]); L(2).qlim=[-pi,pi]; L(2).offset=pi/2; L(3)=Link([theta3 0 a3 alpha3]); L(3).qlim=[0,15]; L(3).jointtype='P';

时间: 2024-04-25 13:27:06 浏览: 20
这段代码是用来定义机械臂的运动学模型的,其中L(2)和L(3)代表机械臂的两个关节。L(2)是一个旋转关节,它的坐标系原点位于前一个关节的转轴上,旋转轴与Z轴重合,旋转角度为theta2,长度为a2。L(2).qlim定义了关节的运动范围,[-pi,pi]代表该关节可以旋转的角度范围为-π到π。L(2).offset表示关节初始位置的偏移角度为π/2。L(3)是一个平移关节,它的坐标系原点位于前一个关节的末端,沿着X轴平移a3的距离,旋转角度为theta3,旋转轴与Z轴重合,长度为alpha3。L(3).qlim定义了该关节的运动范围,[0,15]代表该关节可以平移的距离范围为0到15。L(3).jointtype='P'表示该关节为平移关节。
相关问题

%% 利用标准D-H法建立多轴机器人并作轨迹规划 close all; clear; clc; ks = pi/180; %D-H参数表 theta1 = 0; D1 = 5; A1 = 5; alpha1 = pi/2; offset1 = 0; theta2 = 0;D2 = 0; A2 = 20; alpha2 = 0; offset2 = 0; theta3 = 0; D3 = 0; A3 = 5; alpha3 = pi/2; offset3 = 0; theta4 = 0; D4 = 20; A4 = 0; alpha4 = pi/2; offset4 = 0; theta5 = 0; D5 = 0; A5 = 0; alpha5 = pi/2; offset5 = 0; theta6 = 0; D6 = 10; A6 = 0; alpha6 = 0; offset6 = 0; L1 = Link('d', 5, 'a', 5, 'alpha', -pi/2,'offset',0); %Link 类函数;offset建立初始的偏转角 L2 = Link('d', 0, 'a', 20, 'alpha', 0, 'offset', 0); L3 = Link('d', 0, 'a', 5, 'alpha', -pi/2,'offset',0); L4 = Link('d', 20, 'a', 0, 'alpha', pi/2,'offset',0); L5 = Link('d', 0, 'a', 0, 'alpha', -pi/2,'offset',0); L6 = Link('d', 10, 'a', 0, 'alpha', 0, 'offset',0); L1.qlim = [-pi,pi];%利用qlim设置每个关节的旋转角度范围 L2.qlim = [-120,120]*ks; L3.qlim = [-60,60]*ks; L4.qlim = [-pi,pi]; L5.qlim = [-120,120]*ks; L6.qlim = [-pi,pi]; robot=SerialLink([L1,L2,L3,L4,L5,L6],'name','KJ244机械臂'); %SerialLink 类函数 robot.teach title('KJ244机械臂');绘制一段正弦路径

这段代码是建立一个多轴机器人,并进行轨迹规划,利用标准D-H法来确定机械臂的参数,然后利用Link类函数建立机械臂的各个关节,并设置每个关节的旋转角度范围,最后利用SerialLink类函数建立机械臂,并利用teach函数绘制机械臂的运动轨迹。 其中,D-H参数表是机械臂的参数表,包括每个关节的转角、连接长度、连杆长度和旋转角度,offset是建立初始的偏转角。qlim则是利用qlim设置每个关节的旋转角度范围。 最后,利用正弦函数生成一段路径,并将机械臂运动到该路径上。

clear; clc; du = pi/180; L1(1)=Link('theta',-123*du,'a', 0, 'alpha',0,'qlim',[180,365],'modified'); L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3*du,63*du],'modified'); L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60*du,120*du],'modified'); L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified'); % L1(4)=Link('offset',205, 'theta',pi/2,'a',115, 'alpha',pi/2,'qlim',[0,0],'modified'); Needle=SerialLink(L1,'name','Needle'); Needle.display % Needle.plot([100,pi/4,pi/2,0]) figure Needle.teach T=Needle.fkine([180,pi/4,pi/2,0]) T1=myfkine_B([0,pi/4,pi/2,0])这段大麦每行都是什么意思

这段代码是用 MATLAB 编写的,用于描述一个四自由度的机械臂(注射器),并进行正逆运动学求解。 具体解释如下: `clear; clc;` 清除 MATLAB 工作空间并清除命令窗口。 `du = pi/180;` 定义弧度制和角度制之间的转换系数。 `L1(1)=Link('theta',-123*du,'a', 0, 'alpha',0,'qlim',[180,365],'modified');` 定义机械臂的第一段关节,包括该关节的初始角度、长度、旋转轴方向等信息。 `L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3*du,63*du],'modified');` 定义机械臂的第二段关节,包括该关节的初始位置、长度、旋转轴方向等信息。 `L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60*du,120*du],'modified');` 定义机械臂的第三段关节,包括该关节的初始位置、长度、旋转轴方向等信息。 `L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified');` 定义机械臂的第四段关节,包括该关节的初始角度、长度、旋转轴方向等信息。 `Needle=SerialLink(L1,'name','Needle');` 创建一个机械臂对象,包含刚才定义的四个关节。 `Needle.display` 显示机械臂的 DH 参数表格。 `figure Needle.teach` 打开一个机械臂控制界面,可以通过手动控制机械臂的关节来实现运动。 `T=Needle.fkine([180,pi/4,pi/2,0])` 计算机械臂在关节角度为 `[180,pi/4,pi/2,0]` 时的正运动学解,即末端执行器的位置和姿态。 `T1=myfkine_B([0,pi/4,pi/2,0])` 自己编写的一个函数,用于计算机械臂在末端执行器位置已知的情况下,反解出对应的关节角度。

相关推荐

clc; du = pi/180; L1(1)=Link('theta',-123du,'a', 0, 'alpha',0,'qlim',[180,365],'modified'); L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3du,63du],'modified'); L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60du,120du],'modified'); L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified'); Needle=SerialLink(L1,'name','Needle'); % 随机生成关节转角值,并计算末端执行器位姿矩阵 q_rand = (rand(1,4) - 0.5) . [pi, pi/2, pi/2, pi/2]; % 生成在[-pi/2, pi/2]范围内的随机角度值 T_rand = Needle.fkine(q_rand); % 输出结果 disp("随机生成的关节角度值:") disp(q_rand) disp("随机生成的末端执行器位姿矩阵:") disp(T_rand) 运行上述代码后,MATLAB命令窗口会输出随机生成的关节角度值和末端执行器位姿矩阵。B的命令窗口中执行,代码中的 Needle 是之前定义的机器人模型,需要先运行之前的代码以创建机器人模型。 以下是一个简单的例子,展示如何运行这段代码: 复制 % 定义机器人模型 clear; clc; du = pi/180; L1(1)=Link('theta',-123du,'a', 0, 'alpha',0,'qlim',[180,365],'modified'); L1(2)=Link('d',0,'a',185, 'alpha',0,'qlim',[3du,63du],'modified'); L1(3)=Link('d',90,'a', 0, 'alpha',pi/2,'qlim',[60du,120du],'modified'); L1(4)=Link('theta',0,'a', 120, 'alpha',pi/2,'qlim',[230,326],'modified'); Needle=SerialLink(L1,'name','Needle'); % 随机生成关节转角值,并计算末端执行器位姿矩阵 q_rand = (rand(1,4) - 0.5) . [pi, pi/2, pi/2, pi/2]; % 生成在[-pi/2, pi/2]范围内的随机角度值 T_rand = Needle.fkine(q_rand); % 输出结果 disp("随机生成的关节角度值:") disp(q_rand) disp("随机生成的末端执行器位姿矩阵:") disp(T_rand) ,将这段代码帮我续写用 MATLAB给我可视化这个位姿矩阵对应的机器人姿态。

% 定义机器人参数 du = pi/180; L1(1) = Link('theta', 90du+0.02, 'a', 0.001, 'alpha', 0.003, 'qlim', [180du, 365du], 'modified'); L1(2) = Link('d', 0.001, 'a', 185+0.0079, 'alpha', 0.001, 'qlim', [3du, 63du], 'modified'); L1(3) = Link('d', 90/du+0.005, 'a', 0.005, 'alpha', pi/2+0.005, 'qlim', [60du, 120du], 'modified'); L1(4) = Link('theta', 0, 'a', 120+0.12, 'alpha', pi/2, 'qlim', [230du, 326du], 'modified'); L1(3).theta = L1(3).theta + 0.023; L1(4).theta = L1(4).theta + 0.08; Needle = SerialLink(L1, 'name', 'Needle'); % 定义误差量 delta_a = 0.001; % 长度误差 delta_q = 0.01du; % 关节角度误差 delta_alpha = 0.0001; % 关节轴线误差 % 计算末端执行器的初始位姿 q = [0 0 0 0]; % 初始关节角度 T = Needle.fkine(q); % 正运动学 % 添加误差量并计算末端执行器的位姿 for i = 1:100 % 添加长度误差 L1(2).a = L1(2).a + delta_a; Needle = SerialLink(L1, 'name', 'Needle'); T1 = Needle.fkine(q); err1 = tr2delta(T, T1); % 添加关节角度误差 L1(1).theta = L1(1).theta + delta_q; Needle = SerialLink(L1, 'name', 'Needle'); T2 = Needle.fkine(q); err2 = tr2delta(T, T2); % 添加关节轴线误差 L1(3).alpha = L1(3).alpha + delta_alpha; Needle = SerialLink(L1, 'name', 'Needle'); T3 = Needle.fkine(q); err3 = tr2delta(T, T3); % 计算误差的欧氏距离 err(i) = norm([err1, err2, err3]); end % 绘制误差曲线 plot(err); xlabel('Number of iterations'); ylabel('Euclidean error'); title('Geometric error model');这段代码怎么修改我可以输入一组关节角度值然后得到误差值

最新推荐

recommend-type

地县级城市建设道路清扫保洁面积 道路清扫保洁面积道路机械化清扫保洁面积 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

从网站上学习到了路由的一系列代码

今天的学习圆满了
recommend-type

基于AT89C51单片机的可手动定时控制的智能窗帘设计.zip-11

压缩包构造:程序、仿真、原理图、pcb、任务书、结构框图、流程图、开题文档、设计文档、元件清单、实物图、焊接注意事项、实物演示视频、运行图片、功能说明、使用前必读。 仿真构造:AT89C51,LCD液晶显示器,5功能按键,步进器,灯。 代码文档:代码1024行有注释;设计文档18819字。 功能介绍:系统具有手动、定时、光控、温控和湿度控制五种模式。在手动模式下,两个按钮可控制窗帘的开合;定时模式下,根据预设时间自动开合窗帘;光控模式下,当光照超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;温控模式下,当温度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭;湿度控制模式下,当湿度超过设定阈值时,窗帘自动开启;低于阈值时,窗帘自动关闭。按钮可用于调节阈值、选择模式、设置时间等。
recommend-type

007_insert_seal_approval_cursor.sql

007_insert_seal_approval_cursor.sql
recommend-type

springboot072基于JavaWeb技术的在线考试系统设计与实现.zip

java基于SpringBoot+vue在线考试系统源码 带毕业论文+PPT 【资源说明】 1、开发环境:SpringBoot框架;内含Mysql数据库;VUE技术;内含说明文档 2、该资源包括项目的全部源码,下载可以直接使用! 3、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 4、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。