python代码 基于图像配准的视频消抖算法
时间: 2023-09-08 10:10:44 浏览: 196
图像配准算法
5星 · 资源好评率100%
以下是基于图像配准的视频消抖算法的 Python 代码,使用的是 OpenCV 库:
```python
import cv2
import numpy as np
def stabilize_video(input_file, output_file):
cap = cv2.VideoCapture(input_file)
# Get first frame
ret, prev_frame = cap.read()
# Convert to grayscale
prev_gray = cv2.cvtColor(prev_frame, cv2.COLOR_BGR2GRAY)
# Get height and width of frame
height, width = prev_gray.shape[:2]
# Define transformation to identity matrix
transform = np.eye(3)
# Define motion model
motion_model = cv2.MOTION_TRANSLATION
# Define termination criteria
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)
# Create video writer object
fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')
out = cv2.VideoWriter(output_file, fourcc, 30.0, (width, height))
while True:
# Read next frame
ret, curr_frame = cap.read()
if not ret:
break
# Convert to grayscale
curr_gray = cv2.cvtColor(curr_frame, cv2.COLOR_BGR2GRAY)
# Estimate motion between frames
(transform, _) = cv2.findTransformECC(prev_gray, curr_gray, transform, motion_model, criteria)
# Apply motion to current frame
stabilized_frame = cv2.warpPerspective(curr_frame, transform, (width, height), flags=cv2.INTER_LINEAR)
# Write stabilized frame to output video
out.write(stabilized_frame)
# Set current frame as previous frame for next iteration
prev_gray = curr_gray.copy()
cap.release()
out.release()
cv2.destroyAllWindows()
```
该算法的基本思路是,通过图像配准技术来估计相邻帧之间的运动,并将当前帧根据估计出的运动进行纠正,从而达到视频消抖的效果。具体实现中,我们使用了 OpenCV 库中的 `cv2.findTransformECC()` 函数来估计运动模型,然后用 `cv2.warpPerspective()` 函数将当前帧进行纠正。最后,我们将纠正后的帧写入输出视频中。
阅读全文