这两句代码什么意思[~,index] = sort(fitness(:,1)); parents = pop(index(1:popSize/2),:);
时间: 2024-05-25 14:10:36 浏览: 138
这两句代码是MATLAB语言中的语句。假设fitness是一个n行1列的矩阵,sort(fitness(:,1))表示按照fitness矩阵第一列的元素值进行升序排列,[~,index]表示将排序后的fitness矩阵第一列的元素值对应的下标保存在index中。其中“~”表示占位符,表示不需要返回的值。parents = pop(index(1:popSize/2),:)表示根据index中排名前popSize/2个元素的下标,从pop矩阵中选取相应的行作为parents矩阵。其中pop矩阵是一个m行n列的矩阵,m表示种群数量,n表示染色体长度。这段代码的作用是根据适应度函数对种群进行选择,选择出适应度较高的个体作为父母亲代进行交叉和变异。
相关问题
下面这个代码报错了,应该怎么改: %%Matlab Genetic Algorithm for Sin Prediction clear; clc; %population size Npop=50; %create the population Pop=rand(Npop,1)*2*pi; %define fitness fit=@(x) sin(x); %fitness score score=fit(Pop); %maximum number of generations maxgen=100; %weights w=0.7; %probability p_crossover=0.9; p_mutation=0.2; %loop for number of generations for gen=1:maxgen %ranking %rank the population in descending order [~,rank]=sort(score); %rank the population in ascending order rank=flipud(rank); %normalised rank NormalisedRank=rank/sum(rank); %selection %cumulative sum of the normalised rank cumulativeSum=cumsum(NormalisedRank); %randomly select the two parents %from the populations based on their %normalised rank randnum=rand; parent1=find(cumulativeSum>randnum,1); randnum=rand; parent2=find(cumulativeSum>randnum,1); %crossover %randomly select the crossover point pc=randi([1 Npop-1]); %create the offsprings offspring1=[Pop(parent1,1:pc) Pop(parent2,pc+1:end)]; offspring2=[Pop(parent2,1:pc) Pop(parent1,pc+1:end)]; %perform crossover with a probability if(rand<p_crossover) Pop=[Pop; offspring1; offspring2]; end %mutation %randomly select the point of mutation pm=randi([1 Npop]); %mutate the value under the chosen point Pop(pm)=rand*2*pi; %perform mutation with a probability if (rand<p_mutation) Pop(pm)=rand*2*pi; end %evaluate new population score=fit(Pop); %elitism %sort the population in ascending order %of their fitness score [score,rank]=sort(score); elite=Pop(rank(1),:); Pop(rank(Npop),:)=elite; %replace old population Pop=Pop(1:Npop,:); end %print the best solution disp('Best Solution: '); disp(elite);
I'm sorry, I don't understand your question. Can you please provide more information or clarify what you're asking?
在以上代码中,我们需要实现以下辅助函数: initpop:随机生成初始种群 calfitness:计算适应度函数 selection:选择操作 crossover:交叉操作 mutation:变异操作 nextpop:选择下一代种群 ganttchart:生成甘特图 plotfitness:绘制收敛图 完整的matlab代码如下:
以下是完整的matlab代码:
```matlab
function main()
% 流水车间调度优化问题的遗传模拟退火算法求解
% 定义流水车间调度问题的参数
n = 10; % 任务数量
m = 3; % 流水线数量
p = rand(n,m); % 任务加工时间
% 定义遗传模拟退火算法的参数
popsize = 50; % 种群大小
maxgen = 100; % 最大迭代次数
pc = 0.8; % 交叉概率
pm = 0.1; % 变异概率
% 初始化种群
pop = initpop(popsize,n);
for i = 1:maxgen
% 计算适应度函数
fitness = calfitness(pop,p);
% 选择
parents = selection(pop,fitness);
% 交叉
offspring = crossover(parents,pc);
% 变异
offspring = mutation(offspring,pm);
% 合并父代和子代
pop = [pop;offspring];
% 选择下一代种群
fitness = calfitness(pop,p);
pop = nextpop(pop,fitness,popsize);
% 输出结果
[bestfit,bestind] = min(fitness);
bestchrom = pop(bestind,:);
ganttchart(bestchrom,p);
plotfitness(fitness);
end
end
% 随机生成初始种群
function pop = initpop(popsize,n)
pop = zeros(popsize,n*2);
for i = 1:popsize
chrom = zeros(1,n*2);
for j = 1:n
idx = randi(n);
chrom((j-1)*2+1) = idx;
chrom(j*2) = rand()*10;
end
pop(i,:) = chrom;
end
end
% 计算适应度函数
function fitness = calfitness(pop,p)
popsize = size(pop,1);
n = size(p,1);
m = size(p,2);
fitness = zeros(popsize,1);
for i = 1:popsize
chrom = pop(i,:);
times = zeros(n,m);
for j = 1:n
idx = chrom((j-1)*2+1);
t = chrom(j*2);
if idx == 1
for k = 1:m
if k == 1
times(idx,k) = t;
else
times(idx,k) = times(idx,k-1) + p(idx,k-1);
end
end
else
for k = 1:m
if k == 1
times(idx,k) = times(idx-1,k) + p(idx-1,k);
else
times(idx,k) = max(times(idx,k-1),times(idx-1,k)+p(idx-1,k));
end
end
end
end
fitness(i) = max(times(n,:));
end
end
% 选择操作
function parents = selection(pop,fitness)
popsize = size(pop,1);
parents = zeros(popsize/2,size(pop,2));
for i = 1:popsize/2
idx1 = randi(popsize);
idx2 = randi(popsize);
if fitness(idx1) < fitness(idx2)
parents(i,:) = pop(idx1,:);
else
parents(i,:) = pop(idx2,:);
end
end
end
% 交叉操作
function offspring = crossover(parents,pc)
popsize = size(parents,1)*2;
offspring = zeros(popsize,size(parents,2));
for i = 1:2:popsize
if rand() < pc
idx1 = randi(size(parents,1));
idx2 = randi(size(parents,1));
while idx2 == idx1
idx2 = randi(size(parents,1));
end
parent1 = parents(idx1,:);
parent2 = parents(idx2,:);
child1 = zeros(1,size(parents,2));
child2 = zeros(1,size(parents,2));
for j = 1:size(parents,2)
if rand() < 0.5
child1(j) = parent1(j);
child2(j) = parent2(j);
else
child1(j) = parent2(j);
child2(j) = parent1(j);
end
end
offspring(i,:) = child1;
offspring(i+1,:) = child2;
else
idx = randi(size(parents,1));
offspring(i,:) = parents(idx,:);
offspring(i+1,:) = parents(idx,:);
end
end
end
% 变异操作
function offspring = mutation(offspring,pm)
for i = 1:size(offspring,1)
if rand() < pm
idx1 = randi(size(offspring,2));
idx2 = randi(size(offspring,2));
while idx2 == idx1
idx2 = randi(size(offspring,2));
end
tmp = offspring(i,idx1);
offspring(i,idx1) = offspring(i,idx2);
offspring(i,idx2) = tmp;
end
end
end
% 选择下一代种群
function newpop = nextpop(pop,fitness,popsize)
[~,idx] = sort(fitness);
newpop = pop(idx(1:popsize),:);
end
% 生成甘特图
function ganttchart(chrom,p)
n = size(p,1);
m = size(p,2);
times = zeros(n,m);
for j = 1:n
idx = chrom((j-1)*2+1);
t = chrom(j*2);
if idx == 1
for k = 1:m
if k == 1
times(idx,k) = t;
else
times(idx,k) = times(idx,k-1) + p(idx,k-1);
end
end
else
for k = 1:m
if k == 1
times(idx,k) = times(idx-1,k) + p(idx-1,k);
else
times(idx,k) = max(times(idx,k-1),times(idx-1,k)+p(idx-1,k));
end
end
end
end
figure;
barh(times,'stacked');
xlabel('Time');
ylabel('Job');
legend('Line 1','Line 2','Line 3');
end
% 绘制收敛图
function plotfitness(fitness)
figure;
plot(fitness,'LineWidth',2);
xlabel('Generation');
ylabel('Fitness');
end
```
注:由于本算法属于NP难问题,所以求解时间可能会比较长。建议在较小的问题规模下进行测试。
阅读全文