def low(x, a, b): if x <= a: return 1 elif a < x < b: return (b - x) / (b - a) else: return 0 def medium1(x, a, b, c): if x <= a: return 0 elif a < x <= b: return (x - a) / (b - a) elif b < x <= c: return (c - x) / (c - b) elif x >= c: return 0 def medium2(x, b, c, d): if x <= b: return 0 elif b < x <= c: return (x - b) / (c - b) elif c < x < d: return (d - x) / (d - c) elif x >= d: return 0 def high(x, c, d): if x <= c: return 0 elif c < x < d: return (x - c) / (d - c) else: return 1 if __name__ == '__main__': standard_values = [0.05, 0.15, 0.25, 0.50] a = standard_values[0] b = standard_values[1] c = standard_values[2] d = standard_values[3] x = 0.07 memberships = [low(x,a,b), medium1(x,a,b,c), medium2(x,b,c,d), high(x,c,d)] print(memberships)你能帮我把这段代码简化一下吗?

时间: 2023-06-10 20:08:50 浏览: 53
可以将三个medium函数合并成一个,同时将standard_values的值作为函数参数传入,代码如下: ```python def fuzzy_membership(x, a, b, c, d): if x <= a: return 1 elif a < x <= b: return (b - x) / (b - a) elif b < x <= c: return 1 elif c < x <= d: return (d - x) / (d - c) else: return 0 if __name__ == '__main__': standard_values = [0.05, 0.15, 0.25, 0.50] x = 0.07 memberships = [fuzzy_membership(x, standard_values[0], standard_values[1], standard_values[2], standard_values[3]) for _ in range(4)] print(memberships) ``` 这样可以使代码更简洁易懂。
相关问题

def binaSearch(x,t): low=0 high=len(t)-l while low<=high: mid=(low+high)//2 if t[mid]<x: low=mid+1 elif t[mid]>x: high=mid-1 else: return mid else: return -1 l=[34,64,67,72,73,82,83,85,87,88,90,91,96,98] x=int(input("请输入待查找的数:")) res=binaSearch(x,l) if res==-1: print("没有找到{}".format(x)) else: print("找到{},索引为{}!".format(x,res))

这是一个二分查找的实现,输入一个待查找的数x和一个已经排序好的列表t,函数会返回x在t中的索引位置。如果x不在t中,则返回-1。 具体实现过程为:首先定义一个low变量,表示当前查找区间的最小值的索引,初始值为0;再定义一个high变量,表示当前查找区间的最大值的索引,初始值为列表t的长度减去1。然后进行循环查找,当low小于等于high时,计算中间值mid,并与x进行比较。如果t[mid]小于x,则说明x在t的右半部分,将low更新为mid+1;如果t[mid]大于x,则说明x在t的左半部分,将high更新为mid-1;如果相等,则返回mid。循环结束后,如果没有找到x,则返回-1。 这个代码可以用来查找已经排序好的列表中的元素,时间复杂度为O(log n),比线性查找要快。

逐行解释下列代码的意思BGR_img = cv2.imread('fruit.jpg',1) def bgr_to_hsv(BGR_img): rows, cols, _ = BGR_img.shape HSV_img = np.zeros_like(BGR_img) for i in range(rows): for j in range(cols): b, g, r = BGR_img[i, j] b, g, r = b / 255.0, g / 255.0, r / 255.0 cmax = max(b, g, r) cmin = min(b, g, r) delta = cmax - cmin if delta == 0: h = 0 elif cmax == r: h = 30 * (((g - b) / delta) % 6) elif cmax == g: h = 30 * (((b - r) / delta) + 2) else: h = 30 * (((r - g) / delta) + 4) if cmax == 0: s = 0 else: s = delta / cmax v = cmax HSV_img[i, j] = [h, s * 255.0, v * 255.0] return HSV_img HSV_img = bgr_to_hsv(BGR_img) low = np.array([26,43,46]) high = np.array([34,255,255]) mask = np.zeros_like(HSV_img[:,:,0]) b = HSV_img[:,:,0] g = HSV_img[:,:,1] r = HSV_img[:,:,2] mask[(b >= low[0]) & (b <= high[0]) & (g >= low[1]) & (g <= high[1]) & (r >= low[2]) & (r <= high[2])] = 255 height,width = mask.shape mask = np.reshape(mask,(height,width,1)) / 255 mask_BGR = mask * BGR_img cv2.imwrite("mask_fruit.jpg", mask_BGR) plt.show()

1. BGR_img = cv2.imread('fruit.jpg',1):读取名为'fruit.jpg'的图像,参数1表示以BGR格式读取,返回一个BGR格式的图像。 2. def bgr_to_hsv(BGR_img): 定义一个函数bgr_to_hsv,将输入的BGR格式的图像转换为HSV格式的图像。 3. rows, cols, _ = BGR_img.shape:获取BGR图像的行数、列数和通道数(这里的通道数是3,即BGR)。 4. HSV_img = np.zeros_like(BGR_img):创建一个与BGR_img大小相同、所有值为0的HSV格式的图像。 5. for i in range(rows): for j in range(cols)::遍历BGR图像中的每个像素点。 6. b, g, r = BGR_img[i, j]:获取当前像素点的BGR值。 7. b, g, r = b / 255.0, g / 255.0, r / 255.0:将BGR值归一化到[0,1]之间。 8. cmax = max(b, g, r) cmin = min(b, g, r) delta = cmax - cmin:计算当前像素点的最大值、最小值和差值。 9. if delta == 0: h = 0 elif cmax == r: h = 30 * (((g - b) / delta) % 6) elif cmax == g: h = 30 * (((b - r) / delta) + 2) else: h = 30 * (((r - g) / delta) + 4):根据不同情况计算当前像素点的色调值h。 10. if cmax == 0: s = 0 else: s = delta / cmax v = cmax:计算当前像素点的饱和度值s和亮度值v。 11. HSV_img[i, j] = [h, s * 255.0, v * 255.0]:将计算得到的HSV值赋给对应的像素点。 12. return HSV_img:返回转换后的HSV格式的图像。 13. HSV_img = bgr_to_hsv(BGR_img):调用bgr_to_hsv函数将BGR格式的图像转换为HSV格式的图像。 14. low = np.array([26,43,46]) high = np.array([34,255,255]):设置HSV阈值范围。 15. mask = np.zeros_like(HSV_img[:,:,0]):创建一个与HSV_img大小相同、所有值为0的二值化掩码图像。 16. b = HSV_img[:,:,0] g = HSV_img[:,:,1] r = HSV_img[:,:,2]:分别获取HSV图像中的色调、饱和度和亮度通道。 17. mask[(b >= low[0]) & (b <= high[0]) & (g >= low[1]) & (g <= high[1]) & (r >= low[2]) & (r <= high[2])] = 255:根据阈值范围将符合条件的像素点的掩码值设为255,即白色,其余像素点为黑色。 18. height,width = mask.shape mask = np.reshape(mask,(height,width,1)) / 255:对掩码图像进行形状变换,将其转换为三通道的图像,并将其像素值归一化到[0,1]之间。 19. mask_BGR = mask * BGR_img:将掩码图像与原始BGR图像相乘得到掩码后的图像。 20. cv2.imwrite("mask_fruit.jpg", mask_BGR):将掩码后的图像保存到名为'mask_fruit.jpg'的文件中。 21. plt.show():显示掩码后的图像。

相关推荐

class SVDRecommender: def init(self, k=50, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): self.k = k self.ncv = ncv self.tol = tol self.which = which self.v0 = v0 self.maxiter = maxiter self.return_singular_vectors = return_singular_vectors self.solver = solver def svds(self, A): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) # Gramian matrix has real non-negative eigenvalues. eigvals = np.maximum(eigvals.real, 0) # Use complex detection of small eigenvalues from pinvh. t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) # Get a mask indicating which eigenpairs are not degenerate tiny, # and create a reordering array for thresholded singular values. above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh将这段代码放入一个.py文件中,用Spyder查看,有报错,可能是缩进有问题,无法被调用,根据这个问题,给出解决办法,给出改正后的完整代码

class svd_recommender_py(): #svd矩阵推荐 def svds(A, ncv=None, tol=0, which='LM', v0=None, maxiter=None, return_singular_vectors=True, solver='arpack'): if which == 'LM': largest = True elif which == 'SM': largest = False else: raise ValueError("which must be either 'LM' or 'SM'.") if not (isinstance(A, LinearOperator) or isspmatrix(A) or is_pydata_spmatrix(A)): A = np.asarray(A) n, m = A.shape if k <= 0 or k >= min(n, m): raise ValueError("k must be between 1 and min(A.shape), k=%d" % k) if isinstance(A, LinearOperator): if n > m: X_dot = A.matvec X_matmat = A.matmat XH_dot = A.rmatvec XH_mat = A.rmatmat else: X_dot = A.rmatvec X_matmat = A.rmatmat XH_dot = A.matvec XH_mat = A.matmat dtype = getattr(A, 'dtype', None) if dtype is None: dtype = A.dot(np.zeros([m, 1])).dtype else: if n > m: X_dot = X_matmat = A.dot XH_dot = XH_mat = _herm(A).dot else: XH_dot = XH_mat = A.dot X_dot = X_matmat = _herm(A).dot def matvec_XH_X(x): return XH_dot(X_dot(x)) def matmat_XH_X(x): return XH_mat(X_matmat(x)) XH_X = LinearOperator(matvec=matvec_XH_X, dtype=A.dtype, matmat=matmat_XH_X, shape=(min(A.shape), min(A.shape))) # Get a low rank approximation of the implicitly defined gramian matrix. #获得隐式定义的格拉米矩阵的低秩近似。 #这不是解决问题的稳定方法。 solver == 'arpack' eigvals, eigvec = eigsh(XH_X, k=k, tol=tol ** 2, maxiter=maxiter, ncv=ncv, which=which, v0=v0) #格拉米矩阵具有实非负特征值。 eigvals = np.maximum(eigvals.real, 0) #使用来自pinvh的小特征值的复杂检测。 t = eigvec.dtype.char.lower() factor = {'f': 1E3, 'd': 1E6} cond = factor[t] * np.finfo(t).eps cutoff = cond * np.max(eigvals) #得到一个指示哪些本征对不是退化微小的掩码, #并创建阈值奇异值的重新排序数组。 above_cutoff = (eigvals > cutoff) nlarge = above_cutoff.sum() nsmall = k - nlarge slarge = np.sqrt(eigvals[above_cutoff]) s = np.zeros_like(eigvals) s[:nlarge] = slarge if not return_singular_vectors: return np.sort(s) if n > m: vlarge = eigvec[:, above_cutoff] ularge = X_matmat(vlarge) / slarge if return_singular_vectors != 'vh' else None vhlarge = _herm(vlarge) else: ularge = eigvec[:, above_cutoff] vhlarge = _herm(X_matmat(ularge) / slarge) if return_singular_vectors != 'u' else None u = _augmented_orthonormal_cols(ularge, nsmall) if ularge is not None else None vh = _augmented_orthonormal_rows(vhlarge, nsmall) if vhlarge is not None else None indexes_sorted = np.argsort(s) s = s[indexes_sorted] if u is not None: u = u[:, indexes_sorted] if vh is not None: vh = vh[indexes_sorted] return u, s, vh这段代码主要是为了将scipy包中的SVD计算方法封装成一个自定义类,是否封装合适?如果不合适,给出修改后的完整代码

import RPi.GPIO as GPIO from LCD1602 import LCD_1602 import time BtnPin = 13 R = 4 G = 12 B = 6 TRIG = 17 ECHO = 18 buzzer = 20 GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(TRIG, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(ECHO, GPIO.IN) GPIO.setup(R, GPIO.OUT) GPIO.setup(B, GPIO.OUT) GPIO.setup(G, GPIO.OUT) GPIO.setup(buzzer, GPIO.OUT) GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.output(buzzer, GPIO.HIGH) m_lcd = LCD_1602(Address=0x27, bus_id=1, bl=1) flag = m_lcd.lcd_init() def get_distance(): GPIO.output(TRIG, GPIO.HIGH) time.sleep(0.000015) GPIO.output(TRIG, GPIO.LOW) while not GPIO.input(ECHO): pass t1 = time.time() while GPIO.input(ECHO): pass t2 = time.time() distance = round((t2-t1) * 340 / 2, 5) return distance def display_distance(distance): a = '%f'%distance m_lcd.lcd_display_string(0, 0, 'The distance is') m_lcd.lcd_display_string(0, 1, a) m_lcd.lcd_display_string(8, 1, 'm') def turn_on_red(): GPIO.output(R, GPIO.HIGH) def turn_on_green(): GPIO.output(G, GPIO.HIGH) def turn_on_blue(): GPIO.output(B, GPIO.HIGH) def turn_off_leds(): GPIO.output(R, GPIO.LOW) GPIO.output(G, GPIO.LOW) GPIO.output(B, GPIO.LOW) def turn_on_buzzer(): GPIO.output(buzzer, GPIO.LOW) def turn_off_buzzer(): GPIO.output(buzzer, GPIO.HIGH) def main(): while True: if GPIO.input(BtnPin) == 0: flag += 1 elif GPIO.input(BtnPin) == 1: pass if flag % 2 == 0: turn_off_leds() turn_on_buzzer() distance = get_distance() if distance < 0.2: turn_on_blue() turn_off_buzzer() display_distance(distance) time.sleep(1) elif flag % 2 == 1: turn_on_green() if __name__ == '__main__': main() GPIO.cleanup(),帮我把每一行代码注释一下

最新推荐

recommend-type

合信TP-i系列HMI触摸屏CAD图.zip

合信TP-i系列HMI触摸屏CAD图
recommend-type

Mysql 数据库操作技术 简单的讲解一下

讲解数据库操作方面的基础知识,基于Mysql的,不是Oracle
recommend-type

flickr8k-test-gt.json

flickr8k数据集的flickr8k_test_gt.json文件
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。