import RPi.GPIO as GPIO from LCD1602 import LCD_1602 import time BtnPin = 13 R = 4 G = 12 B = 6 TRIG = 17 ECHO = 18 buzzer = 20 GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) GPIO.setup(TRIG, GPIO.OUT, initial=GPIO.LOW) GPIO.setup(ECHO, GPIO.IN) GPIO.setup(R, GPIO.OUT) GPIO.setup(B, GPIO.OUT) GPIO.setup(G, GPIO.OUT) GPIO.setup(buzzer, GPIO.OUT) GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) GPIO.output(buzzer, GPIO.HIGH) m_lcd = LCD_1602(Address=0x27, bus_id=1, bl=1) flag = m_lcd.lcd_init() def get_distance(): GPIO.output(TRIG, GPIO.HIGH) time.sleep(0.000015) GPIO.output(TRIG, GPIO.LOW) while not GPIO.input(ECHO): pass t1 = time.time() while GPIO.input(ECHO): pass t2 = time.time() distance = round((t2-t1) * 340 / 2, 5) return distance def display_distance(distance): a = '%f'%distance m_lcd.lcd_display_string(0, 0, 'The distance is') m_lcd.lcd_display_string(0, 1, a) m_lcd.lcd_display_string(8, 1, 'm') def turn_on_red(): GPIO.output(R, GPIO.HIGH) def turn_on_green(): GPIO.output(G, GPIO.HIGH) def turn_on_blue(): GPIO.output(B, GPIO.HIGH) def turn_off_leds(): GPIO.output(R, GPIO.LOW) GPIO.output(G, GPIO.LOW) GPIO.output(B, GPIO.LOW) def turn_on_buzzer(): GPIO.output(buzzer, GPIO.LOW) def turn_off_buzzer(): GPIO.output(buzzer, GPIO.HIGH) def main(): while True: if GPIO.input(BtnPin) == 0: flag += 1 elif GPIO.input(BtnPin) == 1: pass if flag % 2 == 0: turn_off_leds() turn_on_buzzer() distance = get_distance() if distance < 0.2: turn_on_blue() turn_off_buzzer() display_distance(distance) time.sleep(1) elif flag % 2 == 1: turn_on_green() if __name__ == '__main__': main() GPIO.cleanup(),帮我把每一行代码注释一下

时间: 2023-11-16 14:04:45 浏览: 33
```python import RPi.GPIO as GPIO # 引入RPi.GPIO库,用于控制GPIO口 from LCD1602 import LCD_1602 # 引入LCD1602类,用于控制LCD屏幕 import time # 引入time库,用于延时 BtnPin = 13 # 按钮引脚 R = 4 # 红色LED引脚 G = 12 # 绿色LED引脚 B = 6 # 蓝色LED引脚 TRIG = 17 # 超声波模块Trig引脚 ECHO = 18 # 超声波模块Echo引脚 buzzer = 20 # 蜂鸣器引脚 GPIO.setwarnings(False) # 关闭警告 GPIO.setmode(GPIO.BCM) # 使用BCM编码方式 GPIO.setup(TRIG, GPIO.OUT, initial=GPIO.LOW) # 设置超声波模块Trig引脚为输出,初值低电平 GPIO.setup(ECHO, GPIO.IN) # 设置超声波模块Echo引脚为输入 GPIO.setup(R, GPIO.OUT) # 设置红色LED引脚为输出 GPIO.setup(B, GPIO.OUT) # 设置蓝色LED引脚为输出 GPIO.setup(G, GPIO.OUT) # 设置绿色LED引脚为输出 GPIO.setup(buzzer, GPIO.OUT) # 设置蜂鸣器引脚为输出 GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # 设置按钮引脚为输入,启用上拉电阻 GPIO.output(buzzer, GPIO.HIGH) # 初始化蜂鸣器引脚为高电平 m_lcd = LCD_1602(Address=0x27, bus_id=1, bl=1) # 创建LCD1602对象 flag = m_lcd.lcd_init() # 初始化LCD屏幕,获取初始化状态 def get_distance(): # 获取超声波模块测量的距离 GPIO.output(TRIG, GPIO.HIGH) # 发送高电平信号至Trig引脚 time.sleep(0.000015) # 持续15微秒 GPIO.output(TRIG, GPIO.LOW) # 发送低电平信号至Trig引脚 while not GPIO.input(ECHO): # 等待Echo引脚输入高电平 pass t1 = time.time() # 记录开始时间 while GPIO.input(ECHO): # 等待Echo引脚输入低电平 pass t2 = time.time() # 记录结束时间 distance = round((t2-t1) * 340 / 2, 5) # 计算距离 return distance def display_distance(distance): # 在LCD屏幕上显示距离 a = '%f'%distance # 将距离转换为字符串类型 m_lcd.lcd_display_string(0, 0, 'The distance is') # 在第一行第一列显示"The distance is" m_lcd.lcd_display_string(0, 1, a) # 在第二行第一列显示距离 m_lcd.lcd_display_string(8, 1, 'm') # 在第二行第八列显示"m" def turn_on_red(): # 打开红色LED GPIO.output(R, GPIO.HIGH) def turn_on_green(): # 打开绿色LED GPIO.output(G, GPIO.HIGH) def turn_on_blue(): # 打开蓝色LED GPIO.output(B, GPIO.HIGH) def turn_off_leds(): # 关闭所有LED GPIO.output(R, GPIO.LOW) GPIO.output(G, GPIO.LOW) GPIO.output(B, GPIO.LOW) def turn_on_buzzer(): # 打开蜂鸣器 GPIO.output(buzzer, GPIO.LOW) def turn_off_buzzer(): # 关闭蜂鸣器 GPIO.output(buzzer, GPIO.HIGH) def main(): # 主函数 while True: # 无限循环 if GPIO.input(BtnPin) == 0: # 如果按钮被按下 flag += 1 # 将flag加1 elif GPIO.input(BtnPin) == 1: # 如果按钮被释放 pass # 不进行任何操作 if flag % 2 == 0: # 如果flag为偶数 turn_off_leds() # 关闭LED turn_on_buzzer() # 打开蜂鸣器 distance = get_distance() # 获取距离 if distance < 0.2: # 如果距离小于0.2米 turn_on_blue() # 打开蓝色LED turn_off_buzzer() # 关闭蜂鸣器 display_distance(distance) # 在LCD屏幕上显示距离 time.sleep(1) # 延时1秒 elif flag % 2 == 1: # 如果flag为奇数 turn_on_green() # 打开绿色LED if __name__ == '__main__': main() # 运行主函数 GPIO.cleanup() # 清除GPIO口

相关推荐

解释这段代码import RPi.GPIO as GPIO #引入RPi.GPIO库函数命名为GPIO import time #引入计时time函数 GPIO.setwarnings(False) GPIO.setmode(GPIO.BCM) #将GPIO编程方式设置为BCM模式,基于插座引脚编号 #接口定义 TRIG = 21 #将超声波模块TRIG口连接到树莓派Pin21 ECHO = 22 #将超声波模块ECHO口连接到树莓派Pin22 INT1 = 16 #将L298 INT1口连接到树莓派Pin16 INT2 = 17 #将L298 INT2口连接到树莓派Pin17 INT3 = 18 INT4 = 19 #输出模式 GPIO.setup(TRIG,GPIO.OUT) GPIO.setup(ECHO,GPIO.IN) GPIO.setup(INT1,GPIO.OUT) GPIO.setup(INT2,GPIO.OUT) GPIO.setup(INT3,GPIO.OUT) GPIO.setup(INT4,GPIO.OUT) #一直前进函数 def Forward(): GPIO.output(INT1,GPIO.HIGH) GPIO.output(INT2,GPIO.LOW) GPIO.output(INT3,GPIO.LOW) GPIO.output(INT4,GPIO.HIGH) #后退指定时间函数 def Back_time(time_sleep): GPIO.output(INT1,GPIO.HIGH) GPIO.output(INT2,GPIO.LOW) GPIO.output(INT3,GPIO.HIGH) GPIO.output(INT4,GPIO.LOW) time.sleep(time_sleep) #rght指定时间函数 def right_time(time_sleep): GPIO.output(INT1,GPIO.LOW) GPIO.output(INT2,GPIO.LOW) GPIO.output(INT3,GPIO.HIGH) GPIO.output(INT4,GPIO.LOW) time.sleep(time_sleep) #停止函数 def Stop(): GPIO.output(INT1,GPIO.LOW) GPIO.output(INT2,GPIO.LOW) GPIO.output(INT3,GPIO.LOW) GPIO.output(INT4,GPIO.LOW) # 超声波测距函数 def distance(): GPIO.output(TRIG, 0) time.sleep(0.000002) GPIO.output(TRIG, 1) time.sleep(0.00001) GPIO.output(TRIG, 0) while GPIO.input(ECHO) == 0: pass emitTime = time.time() while GPIO.input(ECHO) == 1: pass acceptTime = time.time() totalTime = acceptTime - emitTime distanceForReturn = totalTime * 340 / 2 * 100 return distanceForReturn def loop(): while True: dis= distance() if dis<=25: while dis<=25: Back_time(0.2) right_time(0.2) dis=distance() else: Forward() if __name__ == '__main__':

最新推荐

计算机基础知识学习资料.doc

计算机基础知识学习资料(zff 著)

2048.py

2048.py

面 向 对 象 课 程 设 计(很详细)

本次面向对象课程设计项目是由西安工业大学信息与计算科学051002班级的三名成员常丽雪、董园园和刘梦共同完成的。项目的题目是设计一个ATM银行系统,旨在通过该系统实现用户的金融交易功能。在接下来的一个星期里,我们团队共同致力于问题描述、业务建模、需求分析、系统设计等各个方面的工作。 首先,我们对项目进行了问题描述,明确了项目的背景、目的和主要功能。我们了解到ATM银行系统是一种自动提款机,用户可以通过该系统实现查询余额、取款、存款和转账等功能。在此基础上,我们进行了业务建模,绘制了系统的用例图和活动图,明确了系统与用户之间的交互流程和功能流程,为后续设计奠定了基础。 其次,我们进行了需求分析,对系统的功能性和非功能性需求进行了详细的梳理和分析。我们明确了系统的基本功能模块包括用户认证、账户管理、交易记录等,同时也考虑到了系统的性能、安全性和可靠性等方面的需求。通过需求分析,我们确立了项目的主要目标和设计方向,为系统的后续开发工作奠定了基础。 接着,我们进行了系统的分析工作,对系统进行了功能分解、结构分析和行为分析。我们对系统的各个模块进行了详细的设计,明确了模块之间的关联和交互关系,保证系统的整体性和稳定性。通过系统分析,我们为系统的设计和实现提供了详细的思路和指导,确保系统的功能和性能达到用户的需求和期望。 最后,我们进行了系统的设计工作,绘制了系统的体系结构图、类图和时序图等,明确了系统的整体架构和各个模块的具体实现方式。我们根据需求分析和系统分析的结果,结合面向对象设计的原则和方法,设计出了一个高效、稳定和灵活的ATM银行系统。通过系统设计,我们为系统的后续开发和调试提供了具体的设计方案和指导。 综上所述,通过本次面向对象课程设计项目,我们不仅学习到了面向对象设计的理论知识和实践技能,也掌握了团队合作和系统开发的经验。通过不懈努力和合作,我们成功完成了ATM银行系统的设计工作,为系统的后续开发和实现奠定了坚实的基础。希望通过这次设计项目的实践,我们能够更好地理解和应用面向对象设计的方法和思想,为未来的学习和工作打下坚实的基础。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Python标签编码错误对程序造成的影响

# 1. Python标签编码错误的介绍 #### 1.1 Python编码问题的概述 编码问题在Python开发中是一个常见而又棘手的难题。首先,我们需了解什么是编码问题,即数据在不同编码方式下出现混乱或乱码的情况。Python中对编码有着复杂的定义和处理方式。因为Python 3默认采用Unicode编码,但在实际应用中仍会遇到编码错误的情况。 #### 1.2 常见的Python编码错误 Python编码错误主要包括解析错误、UnicodeDecodeError错误和UnicodeEncodeError错误。解析错误通常是因为源代码文件的编码格式与Python解释器期望的格式不一致。

那我该怎么获取端口呢,需不需要付费之类

获取端口的方法取决于你选择的部署方式。以下是一些常见的部署选项: 1. 本地部署:如果你想在本地环境中运行 HackChat,你可以选择一个未被占用的端口号。常用的端口号范围是 1024 到 65535。确保你选择的端口没有被其他应用程序使用。 2. 云平台:如果你选择使用云平台(如 AWS、Azure、Google Cloud 等)部署 HackChat,你需要查看该云平台的文档以了解如何分配和获取端口。通常,云平台会根据你的配置为你分配一个端口号。这可能需要一些费用,具体取决于你选择的服务和计划。 3. 共享主机:如果你选择使用共享主机(如 Heroku、Netlify 等)部署 H

复杂可编程逻辑器件ppt课件.ppt

可编程逻辑器件(PLD)是一种由用户根据自己要求来构造逻辑功能的数字集成电路。与传统的具有固定逻辑功能的74系列数字电路不同,PLD本身并没有确定的逻辑功能,而是可以由用户利用计算机辅助设计,例如通过原理图或硬件描述语言(HDL)来表示设计思想。通过编译和仿真,生成相应的目标文件,再通过编程器或下载电缆将设计文件配置到目标器件中,这样可编程器件(PLD)就可以作为满足用户需求的专用集成电路使用。 在PLD的基本结构中,包括与门阵列(AND-OR array)、或门阵列(OR array)、可编程互连线路(interconnect resources)和输入/输出结构。与门阵列和或门阵列是PLD的核心部分,用于实现逻辑功能的组合,并配合互连线路连接各个部件。PLD的输入/输出结构用于与外部设备进行通信,完成数据输入和输出的功能。 除了PLD,还有复杂可编程器件(CPLD)、现场可编程门阵列(FPGA)和系统可编程逻辑器件(ispPAC)等不同类型的可编程逻辑器件。这些器件在逻辑功能实现、资源密度、时钟分配等方面有所不同,可以根据具体应用需求选择合适的器件类型。 对于可编程逻辑器件的设计流程,一般包括需求分析、设计规划、逻辑设计、综合与优化、布局布线、仿真验证和最终生成目标文件等步骤。设计师需要根据具体的需求和功能要求,使用适当的工具和方法完成各个阶段的设计工作,最终实现满足用户要求的可编程逻辑器件设计。 通过学习可编程逻辑器件的分类、特点、基本结构、工作原理和设计流程,可以更深入地了解数字集成电路的设计和实现原理,提高工程师的设计能力和应用水平。可编程逻辑器件的灵活性和可重复编程能力,使其在电子产品的设计与开发中具有重要的作用,不仅可以加快产品研发的速度,还可以降低成本和提高可维护性。 总的来说,可编程逻辑器件是一种灵活可定制的数字集成电路,可以根据用户需求实现不同的逻辑功能。通过适当的设计流程和工具支持,可以高效地完成器件的设计和验证工作,从而实现更加智能、功能更强大的电子产品。深入了解和掌握可编程逻辑器件的原理和应用,对于提升工程师的技术水平和创新能力具有重要意义。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依

Python标签编码中常见错误的调试方法

![Python标签编码中常见错误的调试方法](https://img-blog.csdn.net/20180416194054338?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzIzOTUzNzE3/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70) # 1. 介绍 在数据处理和机器学习任务中,我们经常需要处理不同类型的数据,其中包括标签型数据。标签编码是一种常见的数据预处理技术,用来将标签型数据转换为数值型数据,从而让机器学习算法更好地理解和处理。通过标签编码,我们可

通过cos的值来求出对应的角度

要通过cos的值来求出对应的角度,可以使用反余弦函数或者arccos函数。 在大多数编程语言中,可以使用acos函数来计算反余弦。假设cos值为x,那么可以通过以下方式计算角度: 角度 = acos(x) * 180 / π 其中,acos函数返回的是弧度值,乘以180/π可以将其转换为角度值。 请注意,反余弦函数的定义域是[-1, 1],所以当cos值超出这个范围时,将无法求出对应的角度。