解读代码:# 按节点对的最短路径长度降序排列 sorted_pairs = sorted(shortest_lengths.keys(), key=lambda x: shortest_lengths[x], reverse=True) #定义一个函数来添加额外的边 def add_edges(UG, edges): for u, v in edges: UG.add_edge(u, v) #筛选最优的5条边 new_edges = [] for u, v in sorted_pairs[:5]: if not nx.has_path(UG, u, v): new_edges.append((u, v)) #将图形保存为新的数据集 for u, v in new_edges: UG[u][v]['weight'] = 1 UG[v][u]['weight'] = 1 #创建新的图形来绘制新的最小生成树 UG_with_new_edges = nx.minimum_spanning_tree(UG) #添加新的边 add_edges(UG_with_new_edges, new_edges) #绘制最小生成树 plt.figure(figsize=(8, 6)) pos = nx.spring_layout(UG_with_new_edges) nx.draw_networkx_nodes(UG_with_new_edges, pos, nodelist=UG_with_new_edges.nodes()) nx.draw_networkx_edges(UG_with_new_edges, pos, edgelist=UG_with_new_edges.edges()) nx.draw_networkx_labels(UG_with_new_edges, pos) plt.title('新的最小生成树') plt.show() #计算新的最小生成树中每个节点对之间的最短路长度 new_shortest_lengths = {} for u, v in UG_with_new_edges.edges: if UG.has_edge(v, u): new_shortest_lengths[(u, v)] = UG[u][v]['weight'] + UG[v][u]['weight'] else: new_shortest_lengths[(u, v)] = UG[u][v]['weight'] #比较新的最短路径长度和原始的最短路径长度 for u, v in sorted_pairs[:5]: print(f"添加边 {u} --> {v}")
时间: 2024-04-21 10:28:55 浏览: 133
Python3中`sorted()函数`与`lambda表达式`原理解析
5星 · 资源好评率100%
这段代码是一个基于图的最小生成树算法,主要流程如下:
1. 首先根据节点对的最短路径长度对节点对进行降序排列。
2. 定义一个函数 add_edges ,用于向图中添加额外的边。
3. 筛选出最优的 5 条边,并将它们添加到图中。
4. 创建一个新的图形来绘制新的最小生成树。
5. 绘制最小生成树并显示在画布上。
6. 计算新的最小生成树中每个节点对之间的最短路长度。
7. 比较新的最短路径长度和原始的最短路径长度,并输出添加的边。
具体实现的过程是,根据节点对的最短路径长度排序,选择最优的 5 条边,并将它们添加到图中。然后,使用最小生成树算法构建新的最小生成树,并绘制出来。最后,计算新的最短路径长度,并与原始的最短路径长度进行比较,输出添加的边。这个算法可以用来优化网络结构,使得网络更加高效。
阅读全文