解读代码:# 将有向图转换为无向图 UG = G.to_undirected() # 计算最小生成树 T = nx.minimum_spanning_tree(UG) # 获取最小生成树中的节点和边 nodes = T.nodes() edges = T.edges() # 绘制最小生成树 plt.figure(figsize=(8, 6)) pos = nx.spring_layout(T) nx.draw_networkx_nodes(T, pos, nodelist=nodes) nx.draw_networkx_edges(T, pos, edgelist=edges) nx.draw_networkx_labels(T, pos) plt.show() # 计算最小生成树中每个节点对之间的最短路长度 shortest_lengths = {} for u, v in T.edges: if UG.has_edge(v, u): shortest_lengths[(u, v)] = UG[u][v]['weight'] + UG[v][u]['weight'] else: shortest_lengths[(u, v)] = UG[u][v]['weight'] # 按节点对的最短路径长度降序排列 sorted_pairs = sorted(shortest_lengths.keys(), key=lambda x: shortest_lengths[x], reverse=True)
时间: 2024-04-21 13:29:44 浏览: 288
这段代码实现了以下功能:
1. 将一个有向图转化为无向图,使用 `G.to_undirected()` 函数实现。
2. 计算最小生成树,使用 `nx.minimum_spanning_tree(UG)` 函数实现。其中 `UG` 是上一步转换后的无向图。
3. 获取最小生成树中的节点和边,使用 `T.nodes()` 和 `T.edges()` 函数实现,其中 `T` 是上一步计算出的最小生成树。
4. 绘制最小生成树,使用 `nx.spring_layout` 函数布置节点的位置,`nx.draw_networkx_nodes` 函数绘制节点,`nx.draw_networkx_edges` 函数绘制边,`nx.draw_networkx_labels` 函数绘制节点的标签,`plt.show()` 函数显示图形。
5. 计算最小生成树中每个节点对之间的最短路长度。首先定义一个空字典 `shortest_lengths`,然后遍历最小生成树中的每一条边,如果这条边在转换前的有向图中也存在,则计算该节点对之间的最短路径长度;否则,只取该边的权重作为节点对之间的最短路径长度。最后得到一个字典 `shortest_lengths`,存储了每个节点对之间的最短路径长度。
6. 按照节点对的最短路径长度降序排列,使用 `sorted` 函数实现,其中 `key` 参数指定了排序依据,`reverse=True` 表示降序排列。最后得到一个列表 `sorted_pairs`,按照节点对的最短路径长度降序排列。
相关问题
续写代码:UG = G.to_undirected() # 计算最小生成树 T = nx.minimum_spanning_tree(UG) # 获取最小生成树中的节点和边 nodes = T.nodes() edges = T.edges() 实现:读取表格中各条边的编号、尾节点、头节点、长度、容量,找出网络的最小生成树,计算该最小生成树中每一节点对之间的最短路长度,在最小生成树(无向图)的基础上,希望额外添加5条边,以降低部分节点对之间的最短路长度,如何选择最优的5条边位置
好的,我来续写代码:
```
# 导入必要的库
import networkx as nx
import numpy as np
# 读取表格数据
data = np.loadtxt("data.csv", delimiter=",", dtype=int)
# 构建有向图
G = nx.DiGraph()
for edge in data:
G.add_edge(edge[1], edge[2], weight=edge[3])
# 计算最小生成树
UG = G.to_undirected()
T = nx.minimum_spanning_tree(UG)
# 计算每个节点对之间的最短路径
shortest_paths = dict(nx.shortest_path_length(T))
# 选择最优的5条额外边
best_edges = set()
for _ in range(5):
best_edge = None
best_delta = np.inf
for i in G.nodes():
for j in G.nodes():
if i != j and not G.has_edge(i, j):
delta = 0
for k in G.nodes():
if k != i and k != j:
delta += shortest_paths[k][i] + shortest_paths[k][j] - 2 * shortest_paths[k][T.nodes()[0]] # 计算新增边对路径长度的贡献
if delta < best_delta:
best_edge = (i, j)
best_delta = delta
best_edges.add(best_edge)
G.add_edge(best_edge[0], best_edge[1], weight=0) # 将新增边加入有向图中
# 计算修改后的最小生成树
UG = G.to_undirected()
T = nx.minimum_spanning_tree(UG)
# 输出结果
print("最小生成树中的节点:", T.nodes())
print("最小生成树中的边:", T.edges())
print("每个节点之间的最短路径:", shortest_paths)
print("新增的5条边:", best_edges)
```
上述代码中,我们首先构建有向图 `G`,然后计算其最小生成树 `T`,使用 `nx.shortest_path_length` 函数计算每个节点对之间的最短路径,并选择最优的5条额外边。在计算新增边对路径长度的贡献时,我们使用了最小生成树中任意一个节点作为参考点,这里选择了 `T.nodes()[0]`。最后,将新增边加入有向图中,重新计算其最小生成树,输出结果。
用c语言设计一个基于DOS菜单的应用程序。要利用多级菜单实现各种功能。内容如下: 1. 无向图的基本操作及应用 ① 创建无向图的邻接矩阵 ② 创建无向图的邻接表 ③ 无向图的深度优先遍历 ④ 无向图的广度优先遍历 2. 无向网的基本操作及应用 ① 创建无向网的邻接矩阵 ② 创建无向网的邻接表 ③ 求最小生成树 3. 有向图的基本操作及应用 ① 创建有向图的邻接矩阵 ② 创建有向图的邻接表 ③ 拓扑排序 4. 有向网的基本操作及应用 ① 创建有向网的邻接矩阵 ② 创建有向网的邻接表 ③ 关键路径 ④ 单源最短路径 ⑤ 每对顶点之间的最短路径
以下是一个基于DOS菜单的应用程序设计,可供参考:
```c
#include <stdio.h>
#include <conio.h>
void createUndirectedGraphByMatrix() {
printf("You have chosen to create an undirected graph by adjacency matrix.\n");
// TODO: 实现创建无向图邻接矩阵的功能
}
void createUndirectedGraphByList() {
printf("You have chosen to create an undirected graph by adjacency list.\n");
// TODO: 实现创建无向图邻接表的功能
}
void traverseUndirectedGraphByDFS() {
printf("You have chosen to traverse an undirected graph by depth-first search.\n");
// TODO: 实现无向图深度优先遍历的功能
}
void traverseUndirectedGraphByBFS() {
printf("You have chosen to traverse an undirected graph by breadth-first search.\n");
// TODO: 实现无向图广度优先遍历的功能
}
void createUndirectedNetworkByMatrix() {
printf("You have chosen to create an undirected network by adjacency matrix.\n");
// TODO: 实现创建无向网邻接矩阵的功能
}
void createUndirectedNetworkByList() {
printf("You have chosen to create an undirected network by adjacency list.\n");
// TODO: 实现创建无向网邻接表的功能
}
void findMinimumSpanningTree() {
printf("You have chosen to find the minimum spanning tree.\n");
// TODO: 实现求最小生成树的功能
}
void createDirectedGraphByMatrix() {
printf("You have chosen to create a directed graph by adjacency matrix.\n");
// TODO: 实现创建有向图邻接矩阵的功能
}
void createDirectedGraphByList() {
printf("You have chosen to create a directed graph by adjacency list.\n");
// TODO: 实现创建有向图邻接表的功能
}
void topologicalSort() {
printf("You have chosen to do a topological sort.\n");
// TODO: 实现拓扑排序的功能
}
void createDirectedNetworkByMatrix() {
printf("You have chosen to create a directed network by adjacency matrix.\n");
// TODO: 实现创建有向网邻接矩阵的功能
}
void createDirectedNetworkByList() {
printf("You have chosen to create a directed network by adjacency list.\n");
// TODO: 实现创建有向网邻接表的功能
}
void findCriticalPath() {
printf("You have chosen to find the critical path.\n");
// TODO: 实现求关键路径的功能
}
void findShortestPathFromSingleSource() {
printf("You have chosen to find the shortest path from a single source.\n");
// TODO: 实现求单源最短路径的功能
}
void findAllPairsShortestPath() {
printf("You have chosen to find all pairs shortest path.\n");
// TODO: 实现求每对顶点之间的最短路径的功能
}
int main() {
int choice1, choice2;
while (1) {
printf("Please choose a category:\n");
printf("1. Undirected Graph\n");
printf("2. Undirected Network\n");
printf("3. Directed Graph\n");
printf("4. Directed Network\n");
printf("0. Exit\n");
choice1 = getch() - '0';
printf("%d\n", choice1);
if (choice1 == 0) {
break;
} else if (choice1 < 1 || choice1 > 4) {
printf("Invalid choice.\n");
continue;
}
while (1) {
printf("Please choose a function:\n");
switch (choice1) {
case 1:
printf("1. Create by adjacency matrix\n");
printf("2. Create by adjacency list\n");
printf("3. Traverse by depth-first search\n");
printf("4. Traverse by breadth-first search\n");
break;
case 2:
printf("1. Create by adjacency matrix\n");
printf("2. Create by adjacency list\n");
printf("3. Find minimum spanning tree\n");
break;
case 3:
printf("1. Create by adjacency matrix\n");
printf("2. Create by adjacency list\n");
printf("3. Topological sort\n");
break;
case 4:
printf("1. Create by adjacency matrix\n");
printf("2. Create by adjacency list\n");
printf("3. Find critical path\n");
printf("4. Find shortest path from single source\n");
printf("5. Find all pairs shortest path\n");
break;
}
printf("0. Back\n");
choice2 = getch() - '0';
printf("%d\n", choice2);
if (choice2 == 0) {
break;
} else if ((choice1 == 1 && choice2 < 1 || choice2 > 4) ||
(choice1 == 2 && choice2 < 1 || choice2 > 3) ||
(choice1 == 3 && choice2 < 1 || choice2 > 3) ||
(choice1 == 4 && choice2 < 1 || choice2 > 5)) {
printf("Invalid choice.\n");
continue;
}
switch (choice1) {
case 1:
switch (choice2) {
case 1:
createUndirectedGraphByMatrix();
break;
case 2:
createUndirectedGraphByList();
break;
case 3:
traverseUndirectedGraphByDFS();
break;
case 4:
traverseUndirectedGraphByBFS();
break;
}
break;
case 2:
switch (choice2) {
case 1:
createUndirectedNetworkByMatrix();
break;
case 2:
createUndirectedNetworkByList();
break;
case 3:
findMinimumSpanningTree();
break;
}
break;
case 3:
switch (choice2) {
case 1:
createDirectedGraphByMatrix();
break;
case 2:
createDirectedGraphByList();
break;
case 3:
topologicalSort();
break;
}
break;
case 4:
switch (choice2) {
case 1:
createDirectedNetworkByMatrix();
break;
case 2:
createDirectedNetworkByList();
break;
case 3:
findCriticalPath();
break;
case 4:
findShortestPathFromSingleSource();
break;
case 5:
findAllPairsShortestPath();
break;
}
break;
}
}
}
return 0;
}
```
阅读全文