labels = { "relpath": np.array(self.relpaths), "synsets": np.array(self.synsets), "class_label": np.array(self.class_labels), "human_label": np.array(self.human_labels), }解析,为啥要用array
时间: 2024-04-01 17:32:47 浏览: 54
keras:model.compile损失函数的用法
在这段代码中,`labels` 是一个字典,包含了四个键值对。其中,每个键对应的值都是一个 `numpy` 数组,分别是 `relpath`、`synsets`、`class_label` 和 `human_label`。这些数组都是由 `numpy` 库提供的多维数组对象,用于存储和处理大规模数值数据。
使用数组的好处是,它可以更高效地存储和处理数据,同时也提供了许多方便的函数和方法,用于对数据进行运算、重塑、筛选等操作。在这个例子中,使用数组的好处是可以方便地进行批量操作,例如对所有图片进行预处理或者评估。
另外,使用数组还可以方便地将数据传递给深度学习框架中的模型进行训练或预测。深度学习模型通常需要将数据转换成张量形式,而 `numpy` 数组可以很方便地转换成张量,并且支持多种数据类型和维度格式。因此,使用数组可以方便地将数据集和模型进行连接,从而构建起完整的深度学习管道。
综上所述,使用 `numpy` 数组可以提高数据处理效率和代码简洁度,同时也方便了深度学习模型的训练和预测。
阅读全文