计算多标签评价指标subset accuracy的python代码
时间: 2023-11-03 18:04:40 浏览: 85
下面是计算多标签评价指标subset accuracy的Python代码:
```python
def subset_accuracy(y_true, y_pred):
"""
计算多标签评价指标subset accuracy
:param y_true: 真实标签,二维数组,每个样本可能有多个标签,标签用0或1表示
:param y_pred: 预测标签,二维数组,每个样本可能有多个标签,标签用0或1表示
:return: subset accuracy
"""
num_samples = len(y_true)
correct = 0
for i in range(num_samples):
if np.array_equal(y_true[i], y_pred[i]):
correct += 1
return float(correct) / num_samples
```
其中,`y_true`和`y_pred`都是二维数组,每个样本可能有多个标签,标签用0或1表示。函数首先计算样本数`num_samples`,然后遍历每个样本,如果它们的真实标签和预测标签完全一致,那么就认为它们被分类正确,将`correct`计数器加1。最后,将正确分类的样本数除以总样本数,得到subset accuracy。
相关问题
眼科疾病分类python代码
以下是一个简单的眼科疾病分类的Python代码示例,使用了Keras深度学习框架和眼科疾病图像数据集:
```python
import os
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# 设置GPU内存增长
physical_devices = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(physical_devices[0], True)
# 数据路径和参数
data_path = 'path/to/dataset/'
img_height = 256
img_width = 256
batch_size = 32
# 数据预处理
train_ds = keras.preprocessing.image_dataset_from_directory(
data_path,
validation_split=0.2,
subset="training",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
val_ds = keras.preprocessing.image_dataset_from_directory(
data_path,
validation_split=0.2,
subset="validation",
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
class_names = train_ds.class_names
num_classes = len(class_names)
# 数据增强
data_augmentation = keras.Sequential(
[
layers.experimental.preprocessing.RandomFlip("horizontal",
input_shape=(img_height,
img_width,
3)),
layers.experimental.preprocessing.RandomRotation(0.1),
layers.experimental.preprocessing.RandomZoom(0.1),
]
)
# 构建模型
model = keras.Sequential([
data_augmentation,
layers.experimental.preprocessing.Rescaling(1./255),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(128, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(num_classes)
])
# 编译模型
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
# 训练模型
epochs = 10
model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
# 评估模型
test_ds = keras.preprocessing.image_dataset_from_directory(
data_path,
seed=123,
image_size=(img_height, img_width),
batch_size=batch_size)
loss, accuracy = model.evaluate(test_ds)
print("Accuracy", accuracy)
```
这个示例代码使用了卷积神经网络(CNN)来训练眼科疾病分类模型。数据集使用了眼科图像数据集,预处理包括数据增强和归一化。在训练过程中,使用了验证集进行模型性能评估,并在测试集上进行最终评估。
easyensemble算法的实现python代码
以下是 EasyEnsemble 算法的一个简单实现的 Python 代码示例:
```python
from sklearn.tree import DecisionTreeClassifier
from sklearn.base import clone
from sklearn.utils import resample
import numpy as np
class EasyEnsemble:
def __init__(self, base_classifier=DecisionTreeClassifier(), n_estimators=10):
self.base_classifier = base_classifier
self.n_estimators = n_estimators
self.ensemble = []
def fit(self, X, y):
for _ in range(self.n_estimators):
# 通过自助采样创建一个子集
X_subset, y_subset = resample(X, y)
# 训练基分类器
classifier = clone(self.base_classifier)
classifier.fit(X_subset, y_subset)
# 将基分类器添加到集合中
self.ensemble.append(classifier)
def predict(self, X):
# 使用投票机制进行预测
predictions = np.zeros((X.shape[0], self.n_estimators))
for i, classifier in enumerate(self.ensemble):
predictions[:, i] = classifier.predict(X)
return np.round(np.mean(predictions, axis=1))
```
使用示例:
```python
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
# 创建一个示例数据集
X, y = make_classification(n_samples=1000, n_features=10, random_state=42)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建 EasyEnsemble 分类器并进行训练
ensemble = EasyEnsemble(n_estimators=10)
ensemble.fit(X_train, y_train)
# 进行预测并评估准确性
y_pred = ensemble.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
```
请注意,这只是一个简单的实现示例,EasyEnsemble 算法的完整实现可能涉及更多的参数选择、特征选择和模型优化技术。此外,你可以根据自己的需求进行修改和改进。
阅读全文