数据结构普里姆算法 adjv表怎么填

时间: 2023-10-17 21:02:05 浏览: 92
Prim算法是一种最小生成树算法,其核心思想是贪心。 在使用Prim算法时,需要构建一张图,通常使用邻接表来存储图的信息。邻接表是一种链式存储结构,用于存储图中每个顶点的邻接点。 在构建邻接表时,对于每个顶点,需要记录它所连接的边以及对应的邻接点。具体地,可以使用一个链表来存储相同起点的边和终点信息。每个链表节点包括两个部分:邻接点信息和边的权重。 对于Prim算法而言,需要一个跟踪已经加入到最小生成树的顶点集合,以及一个跟踪还未加入最小生成树的顶点集合。在算法开始时,将一个起点加入到已经加入最小生成树的顶点集合中。然后,遍历这个起点的所有邻接点,将它们加入到还未加入最小生成树的顶点集合中。接下来,从还未加入最小生成树的顶点集合中选择一个距离已加入最小生成树的顶点最近的顶点,将它加入到已加入最小生成树的顶点集合中,并更新还未加入最小生成树的顶点集合。重复这个过程,直到所有顶点都加入到最小生成树中。 在邻接表中,每个顶点对应一个链表,链表节点存储了该顶点连接的边和邻接点的信息。在Prim算法中,需要遍历每个顶点的邻接链表,找到距离已加入最小生成树的顶点最近的顶点。具体地,在遍历邻接链表时,需要记录每个邻接点的权重,并找到当前权重最小的邻接点。这个过程可以通过在邻接链表中添加权重字段实现。
相关问题

数据结构普里姆算法代码

普里姆算法(Prim's algorithm)是求解加权无向连通图的最小生成树的经典算法之一,其基本思想是从一个顶点开始,每次选择一条权值最小的边,直到生成一颗包含所有顶点的最小生成树。 以下是普里姆算法的代码实现(使用邻接矩阵表示图): ```c++ #include <iostream> #include <climits> using namespace std; #define V 5 // 图的顶点数 int minKey(int key[], bool mstSet[]) { int min = INT_MAX, min_index; for (int v = 0; v < V; v++) { if (!mstSet[v] && key[v] < min) { min = key[v]; min_index = v; } } return min_index; } void printMST(int parent[], int graph[V][V]) { cout << "Edge \tWeight\n"; for (int i = 1; i < V; i++) { cout << parent[i] << " - " << i << "\t" << graph[i][parent[i]] << endl; } } void primMST(int graph[V][V]) { int parent[V]; // 存储最小生成树 int key[V]; // 存储顶点权值 bool mstSet[V]; // 存储顶点是否被访问 for (int i = 0; i < V; i++) { key[i] = INT_MAX; mstSet[i] = false; } key[0] = 0; // 从第一个顶点开始构建最小生成树 parent[0] = -1; // 第一个顶点没有父节点 for (int count = 0; count < V-1; count++) { int u = minKey(key, mstSet); // 选择权值最小的顶点 mstSet[u] = true; // 标记该顶点已被访问 for (int v = 0; v < V; v++) { if (graph[u][v] && !mstSet[v] && graph[u][v] < key[v]) { parent[v] = u; // 更新最小生成树 key[v] = graph[u][v]; // 更新权值 } } } printMST(parent, graph); // 输出最小生成树 } int main() { int graph[V][V] = {{0, 2, 0, 6, 0}, {2, 0, 3, 8, 5}, {0, 3, 0, 0, 7}, {6, 8, 0, 0, 9}, {0, 5, 7, 9, 0}}; primMST(graph); return 0; } ``` 上述代码中,`minKey` 函数用于找到顶点权值最小的顶点,`printMST` 函数用于输出最小生成树的边和权值,`primMST` 函数是主体部分,用于构建最小生成树。

添加方向约束的普里姆算法普里姆算法

普里姆算法是一种用于生成最小生成树的贪心算法。它的基本思想是从一个初始节点开始,每次添加与当前生成树相邻且权值最小的边,直到生成一棵包含所有节点的树为止。 为了添加方向约束,我们可以在每次选择下一条边时,先判断该边是否符合方向约束,如果符合则选择该边,否则选择下一条符合要求的边。具体实现时,可以在每个节点上记录一个出边集合和一个入边集合,然后在选择下一条边时,只选择出边集合中的边,或者选择入边集合中的边,以满足方向约束。 需要注意的是,添加方向约束可能会导致最小生成树与无约束情况下不同,因此需要在实际应用中根据具体需求进行权衡。
阅读全文

相关推荐

最新推荐

recommend-type

java数据结构与算法.pdf

在编程领域,数据结构与算法是核心组成部分,它们直接影响到程序的效率和性能。Java作为广泛应用的编程语言,其在实现数据结构和算法时有着丰富的库支持和优秀的可读性。下面将对标题和描述中提到的一些关键知识点...
recommend-type

算法与数据结构实验三Prim最小生成树

【算法与数据结构实验三Prim最小生成树】 实验三的核心目标是通过Prim算法来构建一个无向图的最小生成树。最小生成树是一棵包含了图中所有顶点的树,其边的权重之和最小。Prim算法是一种有效的解决此问题的方法。 ...
recommend-type

广州大学 数据结构实验报告 实验三 图的操作与实现

数据结构实验报告——图的操作与实现,主要涵盖了图的存储方式、遍历算法、最小生成树的构建以及最短路径的求解等核心概念。以下是这些知识点的详细说明: 1. **图的存储方式**: - **邻接表**:这种存储方式是...
recommend-type

北邮 数据结构第三次实验 图 实验报告

数据结构是计算机科学中的核心课程之一,特别是在C++这样的编程语言中,理解并掌握数据结构对于开发高效算法至关重要。本实验报告聚焦于“图”这一关键数据结构,它在多种应用中都有广泛的应用,如网络路由、社交...
recommend-type

技术资料分享SY8009非常好的技术资料.zip

技术资料分享SY8009非常好的技术资料.zip
recommend-type

IEEE 14总线系统Simulink模型开发指南与案例研究

资源摘要信息:"IEEE 14 总线系统 Simulink 模型是基于 IEEE 指南而开发的,可以用于多种电力系统分析研究,比如短路分析、潮流研究以及互连电网问题等。模型具体使用了 MATLAB 这一数学计算与仿真软件进行开发,模型文件为 Fourteen_bus.mdl.zip 和 Fourteen_bus.zip,其中 .mdl 文件是 MATLAB 的仿真模型文件,而 .zip 文件则是为了便于传输和分发而进行的压缩文件格式。" IEEE 14总线系统是电力工程领域中用于仿真实验和研究的基础测试系统,它是根据IEEE(电气和电子工程师协会)的指南设计的,目的是为了提供一个标准化的测试平台,以便研究人员和工程师可以比较不同的电力系统分析方法和优化技术。IEEE 14总线系统通常包括14个节点(总线),这些节点通过一系列的传输线路和变压器相互连接,以此来模拟实际电网中各个电网元素之间的电气关系。 Simulink是MATLAB的一个附加产品,它提供了一个可视化的环境用于模拟、多域仿真和基于模型的设计。Simulink可以用来模拟各种动态系统,包括线性、非线性、连续时间、离散时间以及混合信号系统,这使得它非常适合电力系统建模和仿真。通过使用Simulink,工程师可以构建复杂的仿真模型,其中就包括了IEEE 14总线系统。 在电力系统分析中,短路分析用于确定在特定故障条件下电力系统的响应。了解短路电流的大小和分布对于保护设备的选择和设置至关重要。潮流研究则关注于电力系统的稳态操作,通过潮流计算可以了解在正常运行条件下各个节点的电压幅值、相位和系统中功率流的分布情况。 在进行互连电网问题的研究时,IEEE 14总线系统也可以作为一个测试案例,研究人员可以通过它来分析电网中的稳定性、可靠性以及安全性问题。此外,它也可以用于研究分布式发电、负载管理和系统规划等问题。 将IEEE 14总线系统的模型文件打包为.zip格式,是一种常见的做法,以减小文件大小,便于存储和传输。在解压.zip文件之后,用户就可以获得包含所有必要组件的完整模型文件,进而可以在MATLAB的环境中加载和运行该模型,进行上述提到的多种电力系统分析。 总的来说,IEEE 14总线系统 Simulink模型提供了一个有力的工具,使得电力系统的工程师和研究人员可以有效地进行各种电力系统分析与研究,并且Simulink模型文件的可复用性和可视化界面大大提高了工作的效率和准确性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【数据安全黄金法则】:R语言中party包的数据处理与隐私保护

![【数据安全黄金法则】:R语言中party包的数据处理与隐私保护](https://media.geeksforgeeks.org/wp-content/uploads/20220603131009/Group42.jpg) # 1. 数据安全黄金法则与R语言概述 在当今数字化时代,数据安全已成为企业、政府机构以及个人用户最为关注的问题之一。数据安全黄金法则,即最小权限原则、加密保护和定期评估,是构建数据保护体系的基石。通过这一章节,我们将介绍R语言——一个在统计分析和数据科学领域广泛应用的编程语言,以及它在实现数据安全策略中所能发挥的独特作用。 ## 1.1 R语言简介 R语言是一种
recommend-type

Takagi-Sugeno模糊控制方法的原理是什么?如何设计一个基于此方法的零阶或一阶模糊控制系统?

Takagi-Sugeno模糊控制方法是一种特殊的模糊推理系统,它通过一组基于规则的模糊模型来逼近系统的动态行为。与传统的模糊控制系统相比,该方法的核心在于将去模糊化过程集成到模糊推理中,能够直接提供系统的精确输出,特别适合于复杂系统的建模和控制。 参考资源链接:[Takagi-Sugeno模糊控制原理与应用详解](https://wenku.csdn.net/doc/2o97444da0?spm=1055.2569.3001.10343) 零阶Takagi-Sugeno系统通常包含基于规则的决策,它不包含系统的动态信息,适用于那些系统行为可以通过一组静态的、非线性映射来描述的场合。而一阶
recommend-type

STLinkV2.J16.S4固件更新与应用指南

资源摘要信息:"STLinkV2.J16.S4固件.zip包含了用于STLinkV2系列调试器的JTAG/SWD接口固件,具体版本为J16.S4。固件文件的格式为二进制文件(.bin),适用于STMicroelectronics(意法半导体)的特定型号的调试器,用于固件升级或更新。" STLinkV2.J16.S4固件是指针对STLinkV2系列调试器的固件版本J16.S4。STLinkV2是一种常用于编程和调试STM32和STM8微控制器的调试器,由意法半导体(STMicroelectronics)生产。固件是指嵌入在设备硬件中的软件,负责执行设备的低级控制和管理任务。 固件版本J16.S4中的"J16"可能表示该固件的修订版本号,"S4"可能表示次级版本或是特定于某个系列的固件。固件版本号可以用来区分不同时间点发布的更新和功能改进,开发者和用户可以根据需要选择合适的版本进行更新。 通常情况下,固件升级可以带来以下好处: 1. 增加对新芯片的支持:随着新芯片的推出,固件升级可以使得调试器能够支持更多新型号的微控制器。 2. 提升性能:修复已知的性能问题,提高设备运行的稳定性和效率。 3. 增加新功能:可能包括对调试协议的增强,或是新工具的支持。 4. 修正错误:对已知错误进行修正,提升调试器的兼容性和可靠性。 使用STLinkV2.J16.S4固件之前,用户需要确保固件与当前的硬件型号兼容。更新固件的步骤大致如下: 1. 下载固件文件STLinkV2.J16.S4.bin。 2. 打开STLink的软件更新工具(可能是ST-Link Utility),该工具由STMicroelectronics提供,用于管理固件更新过程。 3. 通过软件将下载的固件文件导入到调试器中。 4. 按照提示完成固件更新过程。 在进行固件更新之前,强烈建议用户仔细阅读相关的更新指南和操作手册,以避免因操作不当导致调试器损坏。如果用户不确定如何操作,应该联系设备供应商或专业技术人员进行咨询。 固件更新完成后,用户应该检查调试器是否能够正常工作,并通过简单的测试项目验证固件的功能是否正常。如果存在任何问题,应立即停止使用并联系技术支持。 固件文件通常位于STMicroelectronics官方网站或专门的软件支持平台上,用户可以在这里下载最新的固件文件,以及获得技术支持和更新日志。STMicroelectronics网站上还会提供固件更新工具,它是更新固件的必备工具。 由于固件涉及到硬件设备的底层操作,错误的固件升级可能会导致设备变砖(无法使用)。因此,在进行固件更新之前,用户应确保了解固件更新的风险,备份好重要数据,并在必要时寻求专业帮助。