param = quote(cfg.weibo_param['user_param'].format(name))
时间: 2024-05-28 21:14:44 浏览: 33
这段代码的作用是将用户的名称作为参数,构造出一个请求微博网站的URL。其中,`cfg.weibo_param`是一个字典,存储了请求微博网站时所需要的各种参数。`user_param`是其中一个参数,表示用户名称。`format()`方法会将用户名称填充到`user_param`字符串中的占位符处,得到最终的请求URL。`quote()`方法是将参数进行URL编码,以便在网络传输中进行安全传输。
相关问题
base_url = cfg.weibo_api['base_url'] user_url = base_url.format(quote(cfg.weibo_param['user_param'].format(key)))
这段代码是Python中的字符串格式化操作。其中,base_url和user_url都是字符串,它们包含一些占位符,用来动态地替换一些变量的值。具体解释如下:
- cfg.weibo_api是一个Python字典对象,包含了一些微博API的基本信息,比如API的基础URL、请求方式、参数等。
- base_url是一个字符串,它包含了一个占位符{},用来动态替换API的参数。通过调用format()方法,我们可以将占位符替换成实际的值。
- cfg.weibo_param也是一个Python字典对象,包含了一些微博API请求的参数。其中,'user_param'键对应的值是一个字符串,包含了一个占位符{},用来动态替换搜索关键词。
- quote()函数是Python内置函数,用来将字符串进行URL编码。在这个例子中,我们使用quote()函数将搜索关键词进行编码,防止出现特殊字符或空格等问题。
- 最终,我们将编码后的搜索关键词替换到base_url字符串中的占位符中,得到最终的API请求URL,保存在user_url变量中。
总体来说,这段代码的作用是生成一个微博API请求的URL,其中包含了一些动态的参数。在这个例子中,我们使用了用户搜索API,根据输入的搜索关键词生成了相应的API请求URL。
self.SA_modules.append( nn.Sequential( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ), SelfAttention(channel_out) ) )这是SA_modules的定义代码块,而 for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features)是SA_modules的调用代码块,而这是PointnetSAModuleMSG类的父类的代码:class _PointnetSAModuleBase(nn.Module): def __init__(self): super().__init__() self.npoint = None self.groupers = None self.mlps = None self.pool_method = 'max_pool' def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor): """ :param xyz: (B, N, 3) tensor of the xyz coordinates of the features :param features: (B, N, C) tensor of the descriptors of the the features :param new_xyz: :return: new_xyz: (B, npoint, 3) tensor of the new features' xyz new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors """ new_features_list = [] xyz_flipped = xyz.transpose(1, 2).contiguous() if new_xyz is None: new_xyz = pointnet2_utils.gather_operation( xyz_flipped, pointnet2_utils.furthest_point_sample(xyz, self.npoint) ).transpose(1, 2).contiguous() if self.npoint is not None else None for i in range(len(self.groupers)): new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample) new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint, nsample) if self.pool_method == 'max_pool': new_features = F.max_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) elif self.pool_method == 'avg_pool': new_features = F.avg_pool2d( new_features, kernel_size=[1, new_features.size(3)] ) # (B, mlp[-1], npoint, 1) else: raise NotImplementedError new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint) new_features_list.append(new_features) return new_xyz, torch.cat(new_features_list, dim=1);运行时程序报错提示我在调用SA_modules时传递的三个参数,现在看来应该是多出了参数channel_out,我该怎么修改代码才能让SA_modules顺利接受三个参数并正常运行
根据你提供的代码,SA_modules中包含了两个子模块:PointnetSAModuleMSG和SelfAttention。其中,PointnetSAModuleMSG的定义中没有channel_out参数,而SelfAttention的定义中需要channel_out参数。因此,我猜测你在使用SA_modules时传递了多余的参数channel_out,导致程序报错。
为了解决这个问题,你可以尝试修改SA_modules的定义代码块,将SelfAttention作为PointnetSAModuleMSG的子模块,如下所示:
```
self.SA_modules.append(
nn.Sequential(
PointnetSAModuleMSG(
npoint=cfg.RPN.SA_CONFIG.NPOINTS[k],
radii=cfg.RPN.SA_CONFIG.RADIUS[k],
nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k],
mlps=mlps,
use_xyz=use_xyz,
bn=cfg.RPN.USE_BN,
self_attention=True, # 添加self_attention参数
channel_out=channel_out # 添加channel_out参数
)
)
)
```
然后在调用SA_modules时,只需要传递两个参数(xyz和features)即可,如下所示:
```
for i in range(len(self.SA_modules)):
li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i])
l_xyz.append(li_xyz)
l_features.append(li_features)
```
这样修改之后,你的代码应该就能够正常运行了。
阅读全文
相关推荐














