ret1, th1 = cv2.threshold(img, 50, 100, cv2.THRESH_BINARY)
时间: 2024-06-04 09:07:54 浏览: 88
这段代码使用 OpenCV 库中的 `cv2.threshold()` 函数对图像进行二值化处理,将图像中灰度值大于 50 的像素点设为 100,小于等于 50 的像素点设为 0,最终输出二值化后的图像和阈值。其中,`img` 是输入的图像,`50` 是二值化的阈值,`100` 是超过阈值的像素点设置的新值,`cv2.THRESH_BINARY` 是二值化的类型,表示将大于阈值的像素点设置为新值,小于等于阈值的像素点设置为 0。函数的返回值 `ret1` 是计算出的阈值,`th1` 是二值化后的图像。
相关问题
def find_center(img): h, w = img.shape roi_h = int(h * 2 / 3) roi_img = img[roi_h:, :] img_blur = cv2.GaussianBlur(roi_img, (15, 15), 0) # 高斯模糊 ret, th2 = cv2.threshold(img_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) g2 = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)) open_img = cv2.morphologyEx(th2, cv2.MORPH_OPEN, g2, iterations=3) x_sum = np.sum(open_img, axis=0) x_point = np.where(x_sum > 0) point_x = int((x_point[0][0] + x_point[0][-1]) / 2) # print(roi_h, w) # np.savetxt('reshape_data.txt', x_point, delimiter=' ', fmt='%i') return point_x 翻译
这是一个 Python 函数,它的作用是从一张图像中找到中心点的横坐标。
函数的参数是一个二维的图像数组 img,表示需要进行处理的图像。
函数的处理过程如下:
- 使用 shape 方法获取图像的高度(h)和宽度(w)。
- 计算一个感兴趣区域(ROI)的高度 roi_h,这个区域从图像的下部 2/3 处开始,到整个图像底部结束。
- 在这个 ROI 区域内,对图像进行高斯模糊,使用的模板大小为 (15, 15)。
- 对模糊后的图像进行二值化处理,使用的方法是 OTSU 自适应阈值二值化算法。
- 对二值化后的图像进行形态学开运算,使用的模板为 3x3 的矩形结构元素,迭代次数为 3。
- 对处理后的图像进行列方向上的求和操作,得到一个一维数组 x_sum,表示每列中像素值为 255 的像素点个数。
- 使用 NumPy 库中的 where 函数,找到 x_sum 数组中值大于 0 的位置,赋值给 x_point。
- 计算 x_point 数组中第一个和最后一个位置的平均值,得到中心点的横坐标 point_x。
- 返回 point_x。
整个函数的作用是对图像进行预处理和分析,找到图像中心点的横坐标。这个函数可以用于自动驾驶等领域的图像处理。
import cv2 import numpy as np def drawshape(src,points): i = 0 while i<len(points): if(i==len(points)-1): x, y = points[i][0] x1, y1 = points[0][0] cv2.line(src, (x, y), (x1, y1), (0, 0, 255 ), 3) else: x, y = points[i][0] x1, y1 = points[i + 1][0] cv2.line(src, (x, y), (x1, y1), (0, 0, 255), 3) i = i + 1 img=cv2.imread("C:/Users/CHL/Pictures/Screenshots/hand.png") print(img.shape) #装变为单通道 gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) #二值化 ret,binary=cv2.threshold(gray,150,255,cv2.THRESH_BINARY) #轮廓查找 contours,hierarchy=cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours(img,contours,-1,(0,255,0),0) #多边形逼近,参数分别为轮廓、精度、是否闭合 e=20 approx=cv2.approxPolyDP(contours[0],e,True) drawshape(img,approx) print(approx) #凸包,参数分别为轮廓,绘制方向 #cv2.convexHull(approx) cv2.imshow('img',img) cv2.waitKey(0)
这段代码是使用OpenCV库绘制手的轮廓并进行多边形逼近和凸包操作。首先,通过使用cv2.imread函数读取手的图像,然后将其转换为灰度图像。接下来,使用二值化操作将图像转换为黑白图像。然后,使用cv2.findContours函数找到图像中的轮廓,并使用cv2.drawContours函数绘制轮廓。接着,使用cv2.approxPolyDP函数对轮廓进行多边形逼近,参数e表示逼近的精度,True表示封闭多边形。最后,使用cv2.imshow函数显示绘制了轮廓和逼近多边形的图像。
阅读全文