torch.nn.embedding.weight.data
时间: 2023-11-26 07:14:47 浏览: 52
This is the tensor that contains the current weights of the embedding layer in a PyTorch neural network. The tensor is of shape (vocabulary_size, embedding_dimension), where vocabulary_size is the number of unique words in the vocabulary and embedding_dimension is the size of the embedding vector for each word. The values in this tensor are updated during the training process using backpropagation, which adjusts the weights to minimize the loss function.
相关问题
def _init_weights(self, module): #初始化模型权重w if isinstance(module, nn.Embedding): nn.init.xavier_normal_(module.weight.data) elif isinstance(module, nn.Linear): nn.init.xavier_normal_(module.weight.data) if module.bias is not None: torch.nn.init.constant_(module.bias.data, 0)
这是一个私有方法 `_init_weights()`,用于初始化模型中的权重。在 PyTorch 中,模型中的权重通常需要进行初始化,以便加速模型的收敛和提高模型的泛化能力。该方法接受一个模块 `module` 作为输入,然后检查该模块是否属于 `nn.Embedding` 或 `nn.Linear` 类型。对于 `nn.Embedding`,该方法使用 Xavier 初始化方法对其权重进行初始化。对于 `nn.Linear`,该方法同样使用 Xavier 初始化方法对其权重进行初始化,并将其偏置初始化为 0。该方法在模型初始化过程中调用,为模型中的每个参数进行初始化。
torch.nn.transformer进行文本分类
可以使用torch.nn.transformer来进行文本分类,具体流程如下:
1. 准备数据集,将训练数据和测试数据转化为tensor格式。
2. 构建Transformer模型,可以使用PyTorch提供的预训练模型,也可以自行构建模型。
3. 定义损失函数,常用的有交叉熵损失函数。
4. 定义优化器,常用的有Adam优化器。
5. 进行模型训练,使用训练数据对模型进行训练,并在测试数据上进行测试。
6. 对模型进行评估,可以使用准确率、F1分数等指标进行评估。
下面是一个简单的代码示例,用于实现基于Transformer的文本分类:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.datasets import IMDB
from torchtext.data import Field, LabelField, BucketIterator
# 将数据集转换为tensor格式
TEXT = Field(tokenize='spacy')
LABEL = LabelField(dtype=torch.float)
train_data, test_data = IMDB.splits(TEXT, LABEL)
TEXT.build_vocab(train_data, max_size=25000)
LABEL.build_vocab(train_data)
train_iterator, test_iterator = BucketIterator.splits(
(train_data, test_data), batch_size=64, device=torch.device('cuda'))
# 定义Transformer模型
class TransformerModel(nn.Module):
def __init__(self, ntoken, ninp, nhead, nhid, nlayers, dropout=0.5):
super(TransformerModel, self).__init__()
from torch.nn import TransformerEncoder, TransformerEncoderLayer
self.model_type = 'Transformer'
self.pos_encoder = PositionalEncoding(ninp, dropout)
encoder_layers = TransformerEncoderLayer(ninp, nhead, nhid, dropout)
self.transformer_encoder = TransformerEncoder(encoder_layers, nlayers)
self.encoder = nn.Embedding(ntoken, ninp)
self.ninp = ninp
self.decoder = nn.Linear(ninp, 1)
self.init_weights()
def generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def init_weights(self):
initrange = 0.1
self.encoder.weight.data.uniform_(-initrange, initrange)
self.decoder.bias.data.zero_()
self.decoder.weight.data.uniform_(-initrange, initrange)
def forward(self, src, src_mask):
src = self.encoder(src) * math.sqrt(self.ninp)
src = self.pos_encoder(src)
output = self.transformer_encoder(src, src_mask)
output = output.mean(dim=0)
output = self.decoder(output)
return output.squeeze()
# 定义损失函数和优化器
criterion = nn.BCEWithLogitsLoss()
model = TransformerModel(len(TEXT.vocab), 512, 8, 2048, 6, dropout=0.5).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.0005)
# 进行模型训练
def train(model, iterator, optimizer, criterion):
model.train()
epoch_loss = 0
for batch in iterator:
optimizer.zero_grad()
src = batch.text
trg = batch.label
src_mask = model.generate_square_subsequent_mask(src.shape[0]).to(device)
output = model(src, src_mask)
loss = criterion(output, trg)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 在测试数据上进行测试
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
with torch.no_grad():
for batch in iterator:
src = batch.text
trg = batch.label
src_mask = model.generate_square_subsequent_mask(src.shape[0]).to(device)
output = model(src, src_mask)
loss = criterion(output, trg)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
N_EPOCHS = 10
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
train_loss = train(model, train_iterator, optimizer, criterion)
valid_loss = evaluate(model, test_iterator, criterion)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'tut6-model.pt')
print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f} | Val. Loss: {valid_loss:.3f}')
```
该示例中使用了IMDB数据集来进行文本分类,使用了PyTorch提供的Transformer模型,并使用Adam优化器进行模型训练。在进行模型训练时,使用了交叉熵损失函数来计算损失。最后,通过在测试数据上进行测试,评估了模型的性能。
阅读全文