T_train = res(temp(1: 80), 8)'

时间: 2024-04-23 10:25:17 浏览: 12
这也是一个MATLAB代码语句,其中包括两个函数res和temp,以及一个矩阵切片操作和一个转置操作。假设temp是一个 $n \times m$ 的矩阵,res是一个函数,可以将输入的矩阵进行一些处理后返回一个新的矩阵。那么这个代码语句的作用是将temp矩阵的前80行(1:80)和第8列(8)的子矩阵作为参数传递给res函数进行处理,然后将处理后的结果进行转置(')并赋值给T_train变量。因此,T_train是一个向量,其大小为1行,可能会因为res函数的处理而发生变化。
相关问题

temp = randperm(103); P_train = res(temp(1: 80), 1: 7)'; T_train = res(temp(1: 80), 8)'; M = size(P_train, 2); P_test = res(temp(81: end), 1: 7)'; T_test = res(temp(81: end), 8)'; N = size(P_test, 2);

这段代码的作用是将数据集随机分成训练集和测试集,其中`res`是原始数据集,包含了8列,前7列为输入特征,最后1列为目标输出。 具体的操作步骤如下: 1. 使用`randperm`函数生成一个1到103的随机排列,共有103个数据点。 ```matlab temp = randperm(103); ``` 2. 将前80个随机排列作为训练集,后23个随机排列作为测试集。 ```matlab P_train = res(temp(1: 80), 1: 7)'; % 取前80个随机排列作为训练集特征 T_train = res(temp(1: 80), 8)'; % 取前80个随机排列作为训练集目标输出 M = size(P_train, 2); % 训练集样本数量 P_test = res(temp(81: end), 1: 7)'; % 取后23个随机排列作为测试集特征 T_test = res(temp(81: end), 8)'; % 取后23个随机排列作为测试集目标输出 N = size(P_test, 2); % 测试集样本数量 ``` 3. `P_train`和`P_test`分别是训练集和测试集的输入特征矩阵,每一列代表一个样本的输入特征向量。`T_train`和`T_test`分别是训练集和测试集的目标输出向量,每个元素代表一个样本的目标输出值。在这段代码中,`M`和`N`分别代表训练集和测试集的样本数量。

将这段matlab语言转为python语言:res = xlsread('C:\Users\yudegui\Desktop\任务3\jiangwei.xlsx'); %% 划分训练集和测试集 temp = 1:1:449919; P_train = res(temp(1: 349920), 1: 11)'; T_train = res(temp(1: 349920), 12)'; M = size(P_train, 2); P_test = res(temp(349920: end), 1: 11)'; T_test = res(temp(349920: end), 12)'; N = size(P_test, 2); %% 数据归一化 [P_train, ps_input] = mapminmax(P_train, 0, 1); P_test = mapminmax('apply', P_test, ps_input); t_train = categorical(T_train)'; t_test = categorical(T_test )'; %% 数据平铺 % 将数据平铺成1维数据只是一种处理方式 % 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构 % 但是应该始终和输入层数据结构保持一致 p_train = double(reshape(P_train, 11, 1, 1, M)); p_test = double(reshape(P_test , 11, 1, 1, N));

下面是将上述 Matlab 代码转换为 Python 代码的结果: ```python import pandas as pd from sklearn.preprocessing import MinMaxScaler import numpy as np # 读取Excel文件 res = pd.read_excel(r'C:\Users\yudegui\Desktop\任务3\jiangwei.xlsx') # 划分训练集和测试集 temp = np.arange(1, 449920) P_train = res.iloc[temp[:349920], :11].T.values T_train = res.iloc[temp[:349920], 11].T.values M = P_train.shape[1] P_test = res.iloc[temp[349920:], :11].T.values T_test = res.iloc[temp[349920:], 11].T.values N = P_test.shape[1] # 数据归一化 scaler = MinMaxScaler(feature_range=(0, 1)) P_train_scaled = scaler.fit_transform(P_train.T).T P_test_scaled = scaler.transform(P_test.T).T ps_input = scaler.get_params() t_train = pd.get_dummies(T_train).T.values t_test = pd.get_dummies(T_test).T.values # 数据平铺 p_train = P_train_scaled.reshape(11, 1, 1, M).astype(float) p_test = P_test_scaled.reshape(11, 1, 1, N).astype(float) ``` 请确保在运行此代码之前已导入所需的库,并且确保 Excel 文件的路径是正确的。此外,我还假设 Excel 文件中的数据已经按照你的要求进行了排列。在 Python 中,我们使用 pandas 库来读取 Excel 文件,并且使用 sklearn 库中的 MinMaxScaler 类来进行数据归一化。最后,使用 numpy 库来进行数组的重塑操作。

相关推荐

res = xlsread('Copy_of_数据集.xlsx'); % temp = randperm(102); % input=res(temp(1: 80), 2: 6)'; input=res((1: 120), 2: 6)'; output=res((1: 120), 10 :11)'; input_train = input(1:80); output_train =output(1:80); input_test = input(80:100); output_test =output(80:100); %节点个数 inputnum=3; hiddennum=10;outputnum=2; [inputn,inputps]=mapminmax(input_train,-1,1); [outputn,outputps]=mapminmax(output_train,-1,1); net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm'); W1= net. iw{1, 1}; B1 = net.b{1}; W2 = net.lw{2,1};%中间层到输出层的权值 B2 = net. b{2};net.trainParam.epochs=15000; net.trainParam.lr=0.001; % 学习速率,这里设置为0.01 net.trainParam.goal=0.01; net=train(net,inputn,outputn);inputn_test=mapminmax('apply',input_test,inputps);an=sim(net,inputn_test); test_simu=mapminmax('reverse',an,outputps);error=test_simu-output_test; figure('units','normalized','position',[0.119 0.2 0.38 0.5]) plot(output_test/100,'bo-') hold on plot(test_simu/101,'r*-') hold on % plot(error,'square','MarkerFaceColor','b') % legend('理论位姿','期望位姿','误差') legend('理论位姿','期望位姿') xlabel('数据组数') ylabel('样本值') % title('BP神经网络测试集的预测值与实际值对比图') an = mapminmax('reverse', an, outputps); output_test = mapminmax('reverse', output_test, outputps); % 将真实结果反归一化 figure; plot(output_test(1,:), 'b-o'); hold on; plot(an(1,:), 'r-*'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果'); [c,l]=size(output_test);帮我绘制神经网络结构图中的输入层的神经元个数为3

res = xlsread('补偿.xlsx'); % temp = randperm(102); % input=res(temp(1: 20), 2: 6)'; input=res((1: 20), 7: 12)'; output=res((1: 20), 2 :4)'; %载入输出数据 %% input_train = input(1:15); output_train =output(1:15); input_test = input(5:25); output_test =output(5:25); inputnum=3; hiddennum=10;outputnum=2; [inputn,inputps]=mapminmax(input_train,-1,1);%归一化到[-1,1]之间,inputps [outputn,outputps]=mapminmax(output_train,-1,1); net=newff(inputn,outputn,hiddennum,{'tansig','purelin'},'trainlm'); W1= net. iw{1, 1};%输入层到中间层的权值 B1 = net.b{1};W2 = net.lw{2,1}; B2 = net. b{2}; net.trainParam.epochs=2000; net.trainParam.lr=0.0001; net.trainParam.goal=0.001; net=train(net,inputn,outputn);inputn,outputn inputn_test=mapminmax('apply',input_test,inputps);an=sim(net,inputn_test); test_simu=mapminmax('reverse',an,outputps); error=test_simu-output_test;figure('units','normalized','position',[0.119 0.2 0.38 0.5]) plot(output_test/70,'bo-') hold on plot(test_simu/70,'r*-') hold on % plot(error,'square','MarkerFaceColor','b') % legend('理论位姿','期望位姿','误差') legend('理论位姿','期望位姿') xlabel('数据组数') ylabel('样本值') % title('BP神经网络测试集的预测值与实际值对比图') an = mapminmax('reverse', an, outputps); % 将预测结果反归一化 output_test = mapminmax('reverse', output_test, outputps); % 将真实结果反归一化 figure; plot(output_test(1,:), 'b-o'); hold on; plot(an(1,:), 'r-'); legend('真实结果', '预测结果'); xlabel('样本编号'); ylabel('输出值'); title('预测结果和真实结果');这段代码帮我修改一下更能体现BP补偿算法

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

ipython-7.9.0.tar.gz

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

debugpy-1.0.0b3-cp37-cp37m-manylinux2010_x86_64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

libaacs-devel-0.10.0-1.mga8.i586.rpm

rpm -i xx.rpm 只要报错遇到aacs的可以看看架构是否一致
recommend-type

几个ACM算法pdf.zip

[ACM国际大学生程序设计竞赛题解].pdf ACM模板-清华大学.pdf ACM算法模板(吉林大学).pdf
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。