Mini-batch loss

时间: 2023-09-28 09:12:10 浏览: 113
PDF

keras中epoch,batch,loss,val_loss用法说明

Mini-batch loss(小批量损失)指的是在机器学习中,使用小批量数据计算的损失函数。在训练神经网络时,通常会使用梯度下降等优化算法来最小化损失函数,从而得到最优的模型参数。为了加速训练过程和提高模型的泛化能力,通常会采用小批量随机梯度下降(mini-batch stochastic gradient descent)的方法来更新模型参数。具体地,每次迭代时,会从训练数据中随机选择一个小批量样本(通常大小为32、64或128等),然后计算该小批量数据的损失函数和梯度,并使用梯度下降等优化算法来更新模型参数。由于小批量数据的样本数相对于全部训练数据较少,因此可以大大降低计算成本和内存消耗,同时也可以提高训练过程中的泛化能力和模型的鲁棒性。
阅读全文

相关推荐

function [beta, b, loss_history] = linear_regression(X, y, batch_size, lr, lr_decay, epochs, lambda) %输入参数: %X:训练数据的特征矩阵,大小为 m x n,其中 m 是样本数,n 是特征数。 %y:训练数据的目标值,大小为 m x 1。 %batch_size:mini-batch 的大小。 %lr:学习率。 %lr_decay:学习率衰减系数。 %epochs:迭代次数。 %lambda:正则项系数。 %输出参数: %beta:学习到的模型参数,大小为 n x 1。 %b:学习到的模型偏差,标量。 %loss_history:损失函数的历史记录,大小为 epochs x 1。 % 对输入数据进行标准化 [m, n] = size(X); mu = mean(X); sigma = std(X); X = (X - mu) ./ sigma; % 初始化模型参数 beta = randn(n, 1); b = randn(); % 设置损失函数的历史记录 loss_history = zeros(epochs, 1); % 进行 mini-batch SGD 迭代 for epoch = 1:epochs % 随机打乱样本顺序 idx = randperm(m); X = X(idx, :); y = y(idx); % 迭代 mini-batch for i = 1:batch_size:m % 计算当前 mini-batch 的梯度 X_batch = X(i:min(i+batch_size-1, m), :); y_batch = y(i:min(i+batch_size-1, m)); grad_theta = (X_batch' * (X_batch * beta + b - y_batch)) / batch_size + lambda * beta; grad_b = sum(X_batch * beta + b - y_batch) / batch_size; % 更新参数 lr = lr / (1 + lr_decay * epoch); % 学习率衰减 beta = beta - lr * grad_theta; b = b - lr * grad_b; end % 计算当前损失函数的值 loss = sum((X * beta + b - y) .^ 2) / (2 * m) + lambda * sum(beta .^ 2) / 2; loss_history(epoch) = loss; end % 绘制损失函数随迭代次数变化的曲线 plot(1:epochs, loss_history); xlabel('Epochs'); ylabel('Loss'); title('Loss vs. Epochs') end将此代码中标准化还原

raceback (most recent call last): File "train_rcnn.py", line 243, in <module> trainer.train( File "/root/autodl-tmp/project/tools/../tools/train_utils/train_utils.py", line 199, in train loss, tb_dict, disp_dict = self._train_it(batch) File "/root/autodl-tmp/project/tools/../tools/train_utils/train_utils.py", line 132, in _train_it loss, tb_dict, disp_dict = self.model_fn(self.model, batch) File "/root/autodl-tmp/project/tools/../lib/net/train_functions.py", line 35, in model_fn ret_dict = model(input_data) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/autodl-tmp/project/tools/../lib/net/point_rcnn.py", line 33, in forward rpn_output = self.rpn(input_data) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/autodl-tmp/project/tools/../lib/net/rpn.py", line 74, in forward backbone_xyz, backbone_features = self.backbone_net(pts_input) # (B, N, 3), (B, C, N) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) File "/root/autodl-tmp/project/tools/../lib/net/pointnet2_msg.py", line 154, in forward li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) File "/root/miniconda3/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl result = self.forward(*input, **kwargs) TypeError: forward() takes 2 positional arguments but 3 were given

最新推荐

recommend-type

Pytorch中accuracy和loss的计算知识点总结

由于在每次梯度更新前,我们使用`optimizer.zero_grad()`清零梯度,所以`loss.backward()`计算的是整个mini-batch的梯度,而不是每个样本的独立梯度。因此,当积累损失时,我们需要除以mini-batch的大小(即`len...
recommend-type

Pytorch中torch.nn的损失函数

- 对于mini-batch:`loss = -1/m * Σ(t_i * log(y_i) + (1 - t_i) * log(1 - y_i))` 其中,`t`是目标值,`y`是预测概率,`m`是mini-batch大小。`size_average`参数默认为True,表示会将每个样本的损失取平均,而`...
recommend-type

体育课评分系统 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程.zip

体育课评分系统 微信小程序+SSM毕业设计 源码+数据库+论文+启动教程 项目启动教程:https://www.bilibili.com/video/BV1BfB2YYEnS
recommend-type

【东证期货-2024研报】短期关注天气能否触发惜售.pdf

研究报告
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依