sklearn.cross_validation安装
时间: 2023-04-23 08:06:14 浏览: 550
sklearn.cross_validation 已经不再被支持,建议使用 model_selection 模块中的 train_test_split 和 KFold 等函数来进行交叉验证。
安装方式:使用 pip 安装 scikit-learn 即可。
在命令行输入:
```
pip install -U scikit-learn
```
也可以使用 conda 安装
```
conda install scikit-learn
```
如果你已经安装了 scikit-learn ,可以使用下面的命令来更新它
```
pip install --upgrade scikit-learn
```
相关问题
sklearn.cross_validation
The `sklearn.cross_validation` module is a deprecated module in Scikit-learn version 0.20. It was used earlier for cross-validation methods, but now it has been moved to the `sklearn.model_selection` module.
The `cross_validation` module provides tools for splitting datasets into training and testing sets, and for evaluating the performance of a machine learning model using cross-validation techniques. It includes functions such as `train_test_split`, `KFold`, `StratifiedKFold`, and `cross_val_score`.
`train_test_split` function is used to split the dataset into training and testing sets. `KFold` and `StratifiedKFold` are used to create cross-validation folds for training and testing the machine learning model. `cross_val_score` function is used to evaluate the performance of a machine learning model using cross-validation.
The `cross_validation` module is still available in Scikit-learn, but it is recommended to use the `model_selection` module instead.
sklearn.cross_validation报错
sklearn.cross_validation报错是指在使用scikit-learn库中的交叉验证模块时出现了错误。具体的错误信息需要根据具体的情况来分析,可能是参数设置不正确、数据格式不符合要求、模型选择不当等原因导致的。需要仔细查看错误信息并进行相应的调整和修正。
阅读全文