请给一个正确的带截距多维Quantile regression C++实现代码及案例
时间: 2024-04-23 07:23:57 浏览: 94
实现直线方程y=kx+b-少儿编程scratch项目源代码文件案例素材.zip
以下是一个带截距多维Quantile regression的C++实现代码:
```c++
#include <iostream>
#include <Eigen/Dense>
#include <unsupported/Eigen/MatrixFunctions>
using namespace Eigen;
using namespace std;
// 定义带截距多维Quantile regression函数
VectorXd QuantileRegression(MatrixXd x, VectorXd y, double tau) {
int n = x.rows();
int p = x.cols();
int k = p + 1;
MatrixXd X(n, k);
X << MatrixXd::Ones(n, 1), x;
VectorXd beta(k);
beta << 0, VectorXd::Ones(p);
double eps = 1e-6;
double step_size = 1e-3;
int max_iter = 1000;
double iter = 0;
while (iter < max_iter) {
VectorXd u(n);
for (int i = 0; i < n; i++) {
u(i) = y(i) - X.row(i) * beta;
}
double f_value = 0;
for (int i = 0; i < n; i++) {
double temp = tau * u(i);
if (temp > 0) {
f_value += temp;
} else {
f_value -= (1 - tau) * temp;
}
}
cout << "f_value: " << f_value << endl;
VectorXd g(k);
for (int j = 0; j < k; j++) {
double temp = 0;
for (int i = 0; i < n; i++) {
double u_i = u(i);
if (tau * u_i > 0) {
temp -= tau * X(i, j) * u_i;
} else {
temp += (1 - tau) * X(i, j) * u_i;
}
}
g(j) = temp / n;
cout << "g(" << j << "): " << g(j) << endl;
}
if (g.norm() < eps) {
break;
}
beta -= step_size * g;
iter++;
}
return beta;
}
// 带截距多维Quantile regression案例
int main() {
MatrixXd x(5, 2);
x << 1, 2,
2, 3,
3, 4,
4, 5,
5, 6;
VectorXd y(5);
y << 1.1, 2.2, 2.8, 4.4, 4.9;
double tau = 0.5;
VectorXd beta = QuantileRegression(x, y, tau);
cout << "beta: " << beta << endl;
return 0;
}
```
该代码使用了Eigen库来进行矩阵运算。其中,x是自变量矩阵,y是因变量向量,tau是分位数值,QuantileRegression函数返回模型参数beta。在该案例中,自变量矩阵x有2个特征,因变量向量y有5个样本,分位数tau为0.5。
阅读全文