多道批处理作业调度模拟程序

时间: 2023-08-16 09:04:30 浏览: 57
好的,我可以为您介绍一个简单的多道批处理作业调度模拟程序。该程序基于先来先服务(FCFS)算法。 首先,我们需要定义作业的结构体,包括作业ID、到达时间、服务时间和完成时间。然后,我们可以在程序中定义一个作业队列,按照到达时间从早到晚排列作业。 接下来,我们可以使用一个循环来模拟作业的执行过程。在每个时间片中,我们将会检查作业队列中是否有作业到达。如果有,我们将会将其加入到作业队列中。然后,我们将会检查当前是否有作业在执行中。如果没有,我们将会从作业队列中选择一个作业开始执行。执行过程中,我们将会更新作业的完成时间。 最后,我们可以输出每个作业的ID、到达时间、服务时间和完成时间。同时,我们可以计算出平均等待时间和平均周转时间,以便评估程序的性能。 这是一个简单的多道批处理作业调度模拟程序的示例,您可以根据实际需求进行修改和优化。
相关问题

单道批处理作业调度代码

单道批处理作业调度是指在计算机系统中,只有一个作业在内存中运行,其他作业需要等待该作业运行结束后才能运行。下面是一个简单的单道批处理作业调度的C语言代码示例: ```c #include <stdio.h> #include <stdlib.h> #include <time.h> int main() { int i, n, t; char username[20], jobname[20]; srand(time(NULL)); // 用系统时间初始化随机数种子 printf("请输入作业个数:"); scanf("%d", &n); for (i = 1; i <= n; i++) { printf("请输入用户名和作业名:"); scanf("%s %s", username, jobname); t = rand() % 10 + 1; // 生成1~10之间的随机数,模拟处理器调度 printf("作业 %s 已经执行结束,用时 %d 秒。\n", jobname, t); } return 0; } ``` 该代码通过输入作业个数和每个作业的用户名和作业名,模拟处理器调度过程,生成1~10之间的随机数模拟处理器运行时间,最后输出每个作业的执行结果。需要注意的是,该代码仅为示例代码,实际应用中需要根据具体情况进行修改和完善。

单道批处理作业调度算法链式队列c

单道批处理作业调度算法可以使用链式队列来实现。具体实现步骤如下: 1. 定义作业控制块(JCB)结构体,包含作业号、到达时间、运行时间、开始时间、完成时间等信息。 2. 定义队列结构体,包含队头指针、队尾指针、队列长度等信息,以及入队和出队操作。 3. 读入所有作业的信息,按照到达时间从小到大排序。 4. 初始化一个空队列,将第一个作业入队。 5. 当队列不为空时,执行以下操作: 1)从队列中取出队头作业。 2)计算该作业的开始时间和完成时间。 3)输出该作业的信息。 4)将下一个到达时间小于该作业完成时间的作业入队。 6. 所有作业都处理完毕后,统计平均周转时间、平均带权周转时间等指标并输出。 下面是使用链式队列实现单道批处理作业调度算法的C语言代码示例: ```c #include <stdio.h> #include <stdlib.h> // 定义作业控制块结构体 typedef struct JCB { int job_id; // 作业号 int arrive_time; // 到达时间 int run_time; // 运行时间 int start_time; // 开始时间 int finish_time; // 完成时间 struct JCB *next; // 指向下一个作业的指针 } JCB; // 定义队列结构体 typedef struct Queue { JCB *front; // 队头指针 JCB *rear; // 队尾指针 int length; // 队列长度 } Queue; // 初始化队列 void initQueue(Queue *q) { q->front = q->rear = NULL; q->length = 0; } // 判断队列是否为空 int isEmpty(Queue *q) { return q->length == 0; } // 入队 void enQueue(Queue *q, JCB *jcb) { if (isEmpty(q)) { q->front = q->rear = jcb; } else { q->rear->next = jcb; q->rear = jcb; } q->length++; } // 出队 JCB* deQueue(Queue *q) { if (isEmpty(q)) { return NULL; } JCB *jcb = q->front; q->front = jcb->next; q->length--; if (q->length == 0) { q->front = q->rear = NULL; } return jcb; } int main() { int n; printf("请输入作业数:"); scanf("%d", &n); JCB *jcb[n]; Queue q; initQueue(&q); // 读入作业信息并按到达时间排序 for (int i = 0; i < n; i++) { jcb[i] = (JCB*)malloc(sizeof(JCB)); printf("请输入作业%d的到达时间和运行时间:", i+1); scanf("%d%d", &jcb[i]->arrive_time, &jcb[i]->run_time); jcb[i]->job_id = i + 1; jcb[i]->next = NULL; // 将作业插入队列中 enQueue(&q, jcb[i]); } // 执行作业调度算法 int current_time = q.front->arrive_time; // 当前时间 double total_turnaround_time = 0.0; // 总周转时间 double total_weighted_turnaround_time = 0.0;// 总带权周转时间 while (!isEmpty(&q)) { JCB *j = deQueue(&q); // 取出队头作业 j->start_time = current_time; // 计算开始时间 j->finish_time = j->start_time + j->run_time; // 计算完成时间 total_turnaround_time += j->finish_time - j->arrive_time; // 统计周转时间 total_weighted_turnaround_time += (j->finish_time - j->arrive_time) * 1.0 / j->run_time; // 统计带权周转时间 printf("作业%d的开始时间:%d,完成时间:%d\n", j->job_id, j->start_time, j->finish_time); current_time = j->finish_time; // 更新当前时间 // 将下一个到达时间小于该作业完成时间的作业入队 for (int i = 0; i < n; i++) { if (jcb[i]->arrive_time > current_time) { break; } if (jcb[i] != j && jcb[i]->start_time == 0) { enQueue(&q, jcb[i]); } } } // 输出统计结果 printf("平均周转时间:%f,平均带权周转时间:%f\n", total_turnaround_time / n, total_weighted_turnaround_time / n); return 0; } ``` 注意,这里只是一种实现方式,还有其他的实现方式,具体可以根据实际情况进行选择。

相关推荐

最新推荐

recommend-type

单道批处理系统作业调度

本次课程设计要求用高级语言编写和调试一个单道批处理系统的作业调度的模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解 2. 课程设计的开发语言 C语言 3. 功能描述 在批处理系统中,作业进入...
recommend-type

操作系统实验报告二——作业调度实验报告

本实验要求学生模拟作业调度的实现,用高级语言编写和调试一个单道批处理系统的作业调度模拟程序,了解作业调度在操作系统中的作用,以加深对作业调度算法的理解。 二、 实验题目 编写并调试一个单道批处理系统的...
recommend-type

操作系统实验指导书(用c语言实现了操作系统里的几个经典算法!)

本实验报告里有想对应的实验二 批处理系统的作业调度、实验三 进程调度模拟程序、实验四 生产者――消费者问题算法的实现、实验五 银行家算法的实现等几个实验的报告书以及相应的程序代码。全部都是用c实现的,很...
recommend-type

操作系统大作业算法分析

虽然在作业中没有直接实现这个算法,但理解其原理对于设计多线程程序是必要的。 3. **银行家算法**: 银行家算法是一种避免死锁的预防策略,主要用于资源分配。在操作系统中,它模拟银行家如何安全地分配贷款,以...
recommend-type

操作系统课设计 SPOOLing系统

这可能涉及到各种调度算法,如先来先服务(FCFS)、短作业优先(SJF)或优先级调度等。 4. **并发执行**:SPOOLing进程与用户进程并发运行,确保了多个I/O请求可以同时处理,提高了系统吞吐量。 5. **程序流程**:从...
recommend-type

京瓷TASKalfa系列维修手册:安全与操作指南

"该资源是一份针对京瓷TASKalfa系列多款型号打印机的维修手册,包括TASKalfa 2020/2021/2057,TASKalfa 2220/2221,TASKalfa 2320/2321/2358,以及DP-480,DU-480,PF-480等设备。手册标注为机密,仅供授权的京瓷工程师使用,强调不得泄露内容。手册内包含了重要的安全注意事项,提醒维修人员在处理电池时要防止爆炸风险,并且应按照当地法规处理废旧电池。此外,手册还详细区分了不同型号产品的打印速度,如TASKalfa 2020/2021/2057的打印速度为20张/分钟,其他型号则分别对应不同的打印速度。手册还包括修订记录,以确保信息的最新和准确性。" 本文档详尽阐述了京瓷TASKalfa系列多功能一体机的维修指南,适用于多种型号,包括速度各异的打印设备。手册中的安全警告部分尤为重要,旨在保护维修人员、用户以及设备的安全。维修人员在操作前必须熟知这些警告,以避免潜在的危险,如不当更换电池可能导致的爆炸风险。同时,手册还强调了废旧电池的合法和安全处理方法,提醒维修人员遵守地方固体废弃物法规。 手册的结构清晰,有专门的修订记录,这表明手册会随着设备的更新和技术的改进不断得到完善。维修人员可以依靠这份手册获取最新的维修信息和操作指南,确保设备的正常运行和维护。 此外,手册中对不同型号的打印速度进行了明确的区分,这对于诊断问题和优化设备性能至关重要。例如,TASKalfa 2020/2021/2057系列的打印速度为20张/分钟,而TASKalfa 2220/2221和2320/2321/2358系列则分别具有稍快的打印速率。这些信息对于识别设备性能差异和优化工作流程非常有用。 总体而言,这份维修手册是京瓷TASKalfa系列设备维修保养的重要参考资料,不仅提供了详细的操作指导,还强调了安全性和合规性,对于授权的维修工程师来说是不可或缺的工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】入侵检测系统简介

![【进阶】入侵检测系统简介](http://www.csreviews.cn/wp-content/uploads/2020/04/ce5d97858653b8f239734eb28ae43f8.png) # 1. 入侵检测系统概述** 入侵检测系统(IDS)是一种网络安全工具,用于检测和预防未经授权的访问、滥用、异常或违反安全策略的行为。IDS通过监控网络流量、系统日志和系统活动来识别潜在的威胁,并向管理员发出警报。 IDS可以分为两大类:基于网络的IDS(NIDS)和基于主机的IDS(HIDS)。NIDS监控网络流量,而HIDS监控单个主机的活动。IDS通常使用签名检测、异常检测和行
recommend-type

轨道障碍物智能识别系统开发

轨道障碍物智能识别系统是一种结合了计算机视觉、人工智能和机器学习技术的系统,主要用于监控和管理铁路、航空或航天器的运行安全。它的主要任务是实时检测和分析轨道上的潜在障碍物,如行人、车辆、物体碎片等,以防止这些障碍物对飞行或行驶路径造成威胁。 开发这样的系统主要包括以下几个步骤: 1. **数据收集**:使用高分辨率摄像头、雷达或激光雷达等设备获取轨道周围的实时视频或数据。 2. **图像处理**:对收集到的图像进行预处理,包括去噪、增强和分割,以便更好地提取有用信息。 3. **特征提取**:利用深度学习模型(如卷积神经网络)提取障碍物的特征,如形状、颜色和运动模式。 4. **目标
recommend-type

小波变换在视频压缩中的应用

"多媒体通信技术视频信息压缩与处理(共17张PPT).pptx" 多媒体通信技术涉及的关键领域之一是视频信息压缩与处理,这在现代数字化社会中至关重要,尤其是在传输和存储大量视频数据时。本资料通过17张PPT详细介绍了这一主题,特别是聚焦于小波变换编码和分形编码两种新型的图像压缩技术。 4.5.1 小波变换编码是针对宽带图像数据压缩的一种高效方法。与离散余弦变换(DCT)相比,小波变换能够更好地适应具有复杂结构和高频细节的图像。DCT对于窄带图像信号效果良好,其变换系数主要集中在低频部分,但对于宽带图像,DCT的系数矩阵中的非零系数分布较广,压缩效率相对较低。小波变换则允许在频率上自由伸缩,能够更精确地捕捉图像的局部特征,因此在压缩宽带图像时表现出更高的效率。 小波变换与傅里叶变换有本质的区别。傅里叶变换依赖于一组固定频率的正弦波来表示信号,而小波分析则是通过母小波的不同移位和缩放来表示信号,这种方法对非平稳和局部特征的信号描述更为精确。小波变换的优势在于同时提供了时间和频率域的局部信息,而傅里叶变换只提供频率域信息,却丢失了时间信息的局部化。 在实际应用中,小波变换常常采用八带分解等子带编码方法,将低频部分细化,高频部分则根据需要进行不同程度的分解,以此达到理想的压缩效果。通过改变小波的平移和缩放,可以获取不同分辨率的图像,从而实现按需的图像质量与压缩率的平衡。 4.5.2 分形编码是另一种有效的图像压缩技术,特别适用于处理不规则和自相似的图像特征。分形理论源自自然界的复杂形态,如山脉、云彩和生物组织,它们在不同尺度上表现出相似的结构。通过分形编码,可以将这些复杂的形状和纹理用较少的数据来表示,从而实现高压缩比。分形编码利用了图像中的分形特性,将其转化为分形块,然后进行编码,这在处理具有丰富细节和不规则边缘的图像时尤其有效。 小波变换和分形编码都是多媒体通信技术中视频信息压缩的重要手段,它们分别以不同的方式处理图像数据,旨在减少存储和传输的需求,同时保持图像的质量。这两种技术在现代图像处理、视频编码标准(如JPEG2000)中都有广泛应用。