java代码分支限界法之单源最短路径问题
时间: 2023-07-29 19:15:02 浏览: 118
以下是使用分支界限法解决单源最短路径问题的Java代码示例:
```java
import java.util.Arrays;
import java.util.PriorityQueue;
class Node implements Comparable<Node> {
int id;
int dist;
public Node(int id, int dist) {
this.id = id;
this.dist = dist;
}
@Override
public int compareTo(Node o) {
return Integer.compare(this.dist, o.dist);
}
}
public class ShortestPath {
static final int INF = Integer.MAX_VALUE;
static int[][] graph;
static int[] dist;
static boolean[] visited;
public static void main(String[] args) {
int n = 5; // 节点数
int m = 7; // 边数
int source = 0; // 源节点
// 构建邻接矩阵
graph = new int[n][n];
for (int[] row : graph) {
Arrays.fill(row, INF);
}
graph[0][1] = 10;
graph[0][3] = 30;
graph[0][4] = 100;
graph[1][2] = 50;
graph[2][4] = 10;
graph[3][2] = 20;
graph[3][4] = 60;
// 初始化距离数组和访问标记数组
dist = new int[n];
visited = new boolean[n];
Arrays.fill(dist, INF);
dist[source] = 0;
// 初始化优先队列
PriorityQueue<Node> pq = new PriorityQueue<>();
pq.add(new Node(source, 0));
// 分支界限法求解最短路径
while (!pq.isEmpty()) {
Node node = pq.poll();
int u = node.id;
if (visited[u]) {
continue;
}
visited[u] = true;
for (int v = 0; v < n; v++) {
if (graph[u][v] != INF && dist[v] > dist[u] + graph[u][v]) {
dist[v] = dist[u] + graph[u][v];
pq.add(new Node(v, dist[v]));
}
}
}
// 输出结果
for (int i = 0; i < n; i++) {
System.out.printf("Shortest distance from %d to %d is %d\n", source, i, dist[i]);
}
}
}
```
在上面的代码中,我们首先构建了一个邻接矩阵表示的图,然后使用分支界限法求解最短路径问题,最后输出了每个节点到源节点的最短距离。在实际应用中,我们可以根据需要对代码进行修改和优化,以适应不同的场景。
阅读全文