行人检测国内外研究现状
时间: 2023-11-23 18:08:05 浏览: 335
行人检测是计算机视觉领域的重要研究方向之一,其应用广泛,如智能监控、自动驾驶等。下面简要介绍一下行人检测的国内外研究现状。
国外研究现状:
1. R-CNN系列:2014年,Ross Girshick等人提出了R-CNN(Region-based Convolutional Neural Networks)算法,该算法是第一个将深度学习应用于目标检测的算法,取得了显著的效果。后来,R-CNN的改进版Fast R-CNN和Faster R-CNN也相继被提出。
2. YOLO系列:2016年,Joseph Redmon等人提出了YOLO(You Only Look Once)算法,该算法采用单个卷积神经网络实现目标检测,速度快,效果好,成为目标检测领域的经典算法。后来,YOLOv2、YOLOv3和Tiny YOLO等版本也相继被提出。
3. SSD系列:2016年,Wei Liu等人提出了SSD(Single Shot MultiBox Detector)算法,该算法采用单个卷积神经网络同时进行目标检测和定位,速度快,精度高,成为目标检测领域的经典算法。
国内研究现状:
1. CFN系列:2016年,吴长江等人提出了CFN(Cross-modal Feature Network)算法,该算法采用多模态特征融合的方法进行目标检测,在行人检测领域取得了较好的效果。
2. SFD系列:2017年,张伟等人提出了SFD(Scale-aware Face Detection)算法,该算法在人脸检测领域取得了较好的效果,后来被应用于行人检测领域。
3. RPN+BF系列:2018年,黄海广等人提出了RPN+BF(Region Proposal Network+Bi-Directional Feature Pyramid Network)算法,该算法引入了双向特征金字塔网络进行目标检测,在行人检测领域取得了较好的效果。
总的来说,目前行人检测领域的研究主要集中在深度学习算法的改进和优化上,其应用前景非常广阔。
阅读全文