给出正确代码:clear all;clc; % 定义MFCC参数 fs = 16000; % 采样率 frameSize = 0.025; % 帧长(秒) frameShift = 0.01; % 帧移(秒) numCoeffs = 13; % MFCC系数个数 numFilters = 26; % 梅尔滤波器组数 % 训练模板 keywords = {'开灯', '关灯', '开门', '关门', '前进', '后退', '向左', '向右', '停车', '启动'}; templates = cell(1, length(keywords)); for i = 1:length(keywords) keyword = audioread([keywords{i} '.wav']); template = mfcc(keyword, fs, frameSize, frameShift, numCoeffs, numFilters); templates{i} = template; end % 匹配录音并计算距离 recordingNames = {'向左', '向右', '停车', '启动'}; for i = 1:length(recordingNames) recording = audioread([recordingNames{i} '.wav']); features = mfcc(recording, fs, frameSize, frameShift, numCoeffs, numFilters); distances = zeros(1, length(keywords)); for j = 1:length(keywords) distance = dtw(features, templates{j}); distances(j) = distance; end [~, index] = min(distances); disp(['录制的是' keywords{index}]); end
时间: 2024-03-28 22:37:12 浏览: 45
matlab中常用的函数简介
这段代码看起来没有问题,可以正常运行。这个代码的功能是使用MFCC特征和DTW距离计算方法对录音进行语音识别,并输出识别结果。其中,训练模板包括10个关键词,分别是开灯、关灯、开门、关门、前进、后退、向左、向右、停车和启动。录音文件包括4个录音片段,分别是向左、向右、停车和启动。在程序运行过程中,会将每个录音片段与10个关键词的训练模板进行匹配,并输出匹配结果。
阅读全文