给出正确代码:clear all;clc; % 定义MFCC参数 fs = 16000; % 采样率 frameSize = 0.025; % 帧长(秒) frameShift = 0.01; % 帧移(秒) numCoeffs = 13; % MFCC系数个数 numFilters = 26; % 梅尔滤波器组数 % 训练模板 keywords = {'开灯', '关灯', '开门', '关门', '前进', '后退', '向左', '向右', '停车', '启动'}; templates = cell(1, length(keywords)); for i = 1:length(keywords) keyword = audioread([keywords{i} '.wav']); template = mfcc(keyword, fs, frameSize, frameShift, numCoeffs, numFilters); templates{i} = template; end % 匹配录音并计算距离 recordingNames = {'向左', '向右', '停车', '启动'}; for i = 1:length(recordingNames) recording = audioread([recordingNames{i} '.wav']); features = mfcc(recording, fs, frameSize, frameShift, numCoeffs, numFilters); distances = zeros(1, length(keywords)); for j = 1:length(keywords) distance = dtw(features, templates{j}); distances(j) = distance; end [~, index] = min(distances); disp(['录制的是' keywords{index}]); end
时间: 2024-03-28 22:37:12 浏览: 51
这段代码看起来没有问题,可以正常运行。这个代码的功能是使用MFCC特征和DTW距离计算方法对录音进行语音识别,并输出识别结果。其中,训练模板包括10个关键词,分别是开灯、关灯、开门、关门、前进、后退、向左、向右、停车和启动。录音文件包括4个录音片段,分别是向左、向右、停车和启动。在程序运行过程中,会将每个录音片段与10个关键词的训练模板进行匹配,并输出匹配结果。
相关问题
补全代码:clear;clc % 读取图像文件 img = imread('Lena01.bmp'); img =imresize(img,0.2); % 显示原始图像 subplot(2, 2, 1); imshow(img); title('Original Image'); % 计算傅里叶变换 f = double(img); F = zeros(size(f)); [M, N] = size(f); for u = 0:M-1 for v = 0:N-1 for x = 0:M-1 for y = 0:N-1 end end end end % 显示傅里叶变换后的图像 subplot(2, 2, 2); imshow(log(1+abs(F)), []); title('Fourier Transform');
补全代码如下:
clear;clc % 读取图像文件
img = imread('Lena01.bmp');
img =imresize(img,0.2);
% 显示原始图像
subplot(2, 2, 1);
imshow(img);
title('Original Image');
% 计算傅里叶变换
f = double(img);
F = zeros(size(f));
[M, N] = size(f);
for u = 0:M-1
for v = 0:N-1
for x = 0:M-1
for y = 0:N-1
F(u+1, v+1) = F(u+1, v+1) + f(x+1, y+1) * exp(-2j*pi*((u*x/M)+(v*y/N)));
end
end
end
end
% 显示傅里叶变换后的图像
subplot(2, 2, 2);
imshow(log(1+abs(F)), []);
title('Fourier Transform');
分析以下代码:clear,clc; N=4;%取滤波器阶数为4 t=0:0.001:1;%定义自变量范围 x=sin(2*pi*6*t) + 0.25*sin(2*pi*80*t);%定义原始信号 fs=1000;%采样频率 fc=20;%截止频率为20Hz wn=(2*fc)/fs;%滤波参数 [b,a]=butter(N,wn,'low');%设计巴特沃斯低通滤波器 y=filter(b,a,x); plot(t,x,'b'); hold on; plot(t,y,'r--'); xlabel('t');ylabel('y');title('原始信号图与低通滤波信号图(截止频率为20Hz)'); axis([0,1,-2,2]); legend('原信号','低通滤波信号');
这段代码主要是对一个正弦信号进行低通滤波,并绘制了原始信号和滤波后的信号的图像。下面是代码的具体分析:
1. 清空命令窗口和图像:使用clear和clc命令清空命令窗口和当前图像。
2. 定义自变量范围:使用t=0:0.001:1定义了自变量t的范围,步长为0.001,共有1001个数据点。
3. 生成原始信号:使用sin函数生成一个6Hz和80Hz的正弦信号,并将它们相加得到原始信号x。
4. 设计滤波器:取滤波器阶数为4,截止频率为20Hz,使用butter函数设计巴特沃斯低通滤波器,并得到滤波器系数b和a。
5. 应用滤波器:使用filter函数对原始信号x进行低通滤波,得到滤波后的信号y。
6. 绘制图像:使用plot函数绘制原始信号x和滤波后的信号y的图像,并使用xlabel、ylabel、title、axis和legend函数添加图像的标签和图例。
注:低通滤波器是一种能够通过滤除高频成分来保留低频成分的信号处理器件,它通常被用来去除信号中的噪声或者干扰,同时保留信号的重要部分。在本代码中,使用巴特沃斯低通滤波器对原始信号进行20Hz的截止频率低通滤波。
阅读全文
相关推荐















