fpr["micro"], tpr["micro"], _ = roc_curve(y.ravel(), X.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
时间: 2023-11-03 15:30:50 浏览: 98
这是一个计算多分类问题中的ROC曲线和AUC值的代码片段。其中,y是真实标签,X是预测标签的概率值,ravel()函数将多维数组转换为一维数组。fpr和tpr分别代表ROC曲线上的假正率和真正率,roc_curve()函数可以计算出它们的值。而roc_auc则是计算AUC值的函数,其中micro参数表示使用微观平均法计算AUC值。
相关问题
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 将字符标签转换为数值标签 le = LabelEncoder() y = le.fit_transform(y) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 构建多分类模型 model = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=42) model.fit(X_train, y_train) # 在测试集上预测每个标签的概率 y_pred = model.predict(X_test) # # 计算micro-averaging的ROC曲线数据 fpr, tpr, _ = roc_curve(y_test, y_pred) roc_auc = auc(fpr, tpr)将此段代码按上述修改
根据上述修改,将代码修改为:
```python
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.multiclass import OneVsRestClassifier
from sklearn.metrics import roc_curve, auc
from sklearn.ensemble import RandomForestClassifier
# 将字符标签转换为数值标签
le = LabelEncoder()
y = le.fit_transform(y)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 定义分类器和OneVsRest分类器
clf = RandomForestClassifier(n_estimators=10, max_depth=5, random_state=42)
ovr = OneVsRestClassifier(clf)
# 训练分类器
ovr.fit(X_train, y_train)
# 预测测试集数据
y_score = ovr.predict_proba(X_test)
# 计算每个类别的ROC曲线和AUC
fpr, tpr, roc_auc = dict(), dict(), dict()
n_classes = y_bin.shape[1]
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# 计算micro-averaging的ROC曲线数据
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
```
这里使用了`LabelEncoder`将字符标签转换为数值标签,并使用`OneVsRestClassifier`来实现"一对多"策略。最后计算了每个类别的ROC曲线和AUC,并计算了micro-averaging的ROC曲线数据。
for each class class_names = np.unique(y_train) y_scores = tree.predict_proba(X_test) y_pred = tree.predict(X_test) macro_auc = roc_auc_score(y_test, y_scores, multi_class='ovo', average='macro') y_test = label_binarize(y_test, classes=range(3)) y_pred = label_binarize(y_pred, classes=range(3)) micro_auc = roc_auc_score(y_test, y_scores, average='micro') #micro_auc = roc_auc_score(y_test, y_scores, multi_class='ovr', average='micro') # calculate ROC curve fpr = dict() tpr = dict() roc_auc = dict() for i in range(3): # 遍历三个类别 fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_pred[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) return reports, matrices, micro_auc, macro_auc, fpr, tpr, roc_auc根据上述代码怎么调整下列代码fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Compute macro-average ROC curve and ROC area(方法一) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr_avg[i] for i in range(3)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(3): mean_tpr += interp(all_fpr, fpr_avg[i], tpr_avg[i]) # Finally average it and compute AUC mean_tpr /= 3 fpr_avg["macro"] = all_fpr tpr_avg["macro"] = mean_tpr macro_auc_avg["macro"] = macro_auc_avg # Plot all ROC curves lw = 2 plt.figure() plt.plot(fpr_avg["micro"], tpr_avg["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(micro_auc_avg["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr_avg["macro"], tpr_avg["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(macro_auc_avg["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(3), colors): plt.plot(fpr_avg[i], tpr_avg[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc_avg[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('DF') plt.legend(loc="lower right") plt.show()
根据上述代码,可以将下列代码进行如下调整:
```python
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_pred.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# Compute macro-average ROC curve and ROC area
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(3)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(3):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= 3
fpr_avg["macro"] = all_fpr
tpr_avg["macro"] = mean_tpr
macro_auc_avg = roc_auc_score(y_test, y_scores, multi_class='ovo', average='macro')
roc_auc_avg["macro"] = macro_auc_avg
# Plot all ROC curves
lw = 2
plt.figure()
plt.plot(fpr_avg["micro"], tpr_avg["micro"], label='micro-average ROC curve (area = {0:0.2f})'
''.format(micro_auc), color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr_avg["macro"], tpr_avg["macro"], label='macro-average ROC curve (area = {0:0.2f})'
''.format(macro_auc_avg), color='navy', linestyle=':', linewidth=4)
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(3), colors):
plt.plot(fpr_avg[i], tpr_avg[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('DF')
plt.legend(loc="lower right")
plt.show()
```
首先,`macro_auc_avg` 应该是一个变量,用来存储计算得到的宏平均 ROC AUC 值,因此需要对其进行定义和赋值。其次,`roc_auc_avg` 应该是一个字典,用来存储每个类别的 ROC AUC 值,因此需要将其定义为一个空字典。在计算宏平均 ROC 曲线和 ROC AUC 值时,应该使用 `roc_auc_score` 函数来计算。最后,在绘制 ROC 曲线时,变量名应该改为 `roc_auc`,而不是 `roc_auc_avg`。
阅读全文