y_score = np.array(y_score).T # 计算并绘制 AUC 曲线 fpr = dict() tpr = dict() roc_auc = dict() for i in range(y_test.shape[1]): fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[0, :, i])怎么修正
时间: 2024-01-21 21:17:57 浏览: 104
根据你提供的代码,我看到 y_score 是一个三维数组,它的第一维是样本数,第二维是类别数,第三维是阈值。而在计算 ROC 曲线时,只需要使用 y_score 的第二维和第三维,即每个类别在不同阈值下的得分。因此,你需要修改代码如下:
```python
y_score = np.array(y_score) # 去掉转置操作
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(y_test.shape[1]):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i, :].ravel()) # 传入每个类别的得分
roc_auc[i] = auc(fpr[i], tpr[i]) # 计算 AUC
```
这里,我们将 y_score 的第二维作为循环变量 i,即每次计算一个类别的 ROC 曲线和 AUC 值。在计算 ROC 曲线时,我们需要将 y_score 的第一维和第三维展开成一维数组,即使用 ravel() 方法。最后,我们将每个类别的 AUC 值存储在字典 roc_auc 中。
相关问题
fpr_avg = np.mean(fpr_list, axis=0) tpr_avg = np.mean(tpr_list, axis=0) roc_auc_avg = np.mean(roc_auc_list, axis=0)出现unsupported operand type(s) for +: 'dict' and 'dict'怎么修正
这个错误提示表明你在对字典类型进行加法操作,而字典不支持加法操作。
根据你的代码,可能是你在对字典类型进行了加法操作,导致出现了这个错误。你可以检查一下代码,看看是否有类似于以下的操作:
```
dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}
dict3 = dict1 + dict2 # 这里会出现错误
```
如果是这样的话,你可以使用字典的 update() 方法来将两个字典合并:
```
dict1 = {'a': 1, 'b': 2}
dict2 = {'c': 3, 'd': 4}
dict1.update(dict2)
```
这样就可以将 dict2 的键值对合并到 dict1 中了。也就是说,dict1 现在是 {'a': 1, 'b': 2, 'c': 3, 'd': 4}。
如果你的问题不是出现在字典的加法操作上,可以提供更多的代码信息,我会尽力帮你解决问题。
修正下列代码y_test=np.array(y_test) y_score=np.array(y_score) fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): # 遍历三个类别 fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area(方法二) fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) # Compute macro-average ROC curve and ROC area(方法一) # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves lw=2 plt.figure() plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Some extension of Receiver operating characteristic to multi-class') plt.legend(loc="lower right") plt.show()
以下是修正后的代码:
```python
y_test = np.array(y_test)
y_score = np.array(y_score)
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
# 遍历三个类别
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area(方法二)
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
# Compute macro-average ROC curve and ROC area(方法一)
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
lw = 2
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()
```
阅读全文